Anderson, Brian D. O., and John B. Moore. 1979. Optimal Filtering. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
Bayes, Thomas. 1763. “An Essay Towards Solving a Problem in the Doctrine of Chances.” Philosophical Transactions of the Royal Society of London, no. 53: 370–418.
Betancourt, Michael. 2017a. “A Conceptual Introduction to Hamiltonian Monte Carlo.” arXiv Preprint arXiv:1701.02434.
Blei, David M, Alp Kucukelbir, and Jon D McAuliffe. 2017. “Variational Inference: A Review for Statisticians.” Journal of the American Statistical Association 112 (518): 859–77.
Brooks, Steve, Andrew Gelman, Galin Jones, and Xiao-Li Meng. 2011. Handbook of Markov Chain Monte Carlo. CRC Press/Chapman & Hall.
Carpenter, Bob, Matthew D Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. 2015. “The Stan Math Library: Reverse-Mode Automatic Differentiation in C++.” arXiv, no. 1509.07164.
Casella, George, and Edward I George. 1992. “Explaining the Gibbs Sampler.” The American Statistician 46 (3): 167–74.
Chib, Siddhartha, and Edward Greenberg. 1995. “Understanding the Metropolis-Hastings Algorithm.” The American Statistician 49 (4): 327–35.
Dawid, A Philip. 1982. “The Well-Calibrated Bayesian.” Journal of the American Statistical Association 77 (379): 605–10.
De Moivre, Abraham. 1718. The Doctrine of Chances: Or, a Method of Calculating the Probabilities of Events in Play. W. Pearfon, for the author.
Devroye, Luc. 1986. Non-Uniform Random Variate Generation. New York: Springer Science+Business Media, LLC.
Diaconis, Persi, and Donald Ylvisaker. 1979. “Conjugate Priors for Exponential Families.” The Annals of Statistics, 269–81.
Doucet, Arnaud, Nando De Freitas, and Neil Gordon. 2001. “An Introduction to Sequential Monte Carlo Methods.” In Sequential Monte Carlo Methods in Practice, edited by Arnaud Doucet, Nando De Freitas, and Neil Gordon, 3–14. New York: Springer.
Duane, Simon, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. 1987. “Hybrid Monte Carlo.” Physics Letters B 195 (2): 216–22.
Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. 2019. “Visualization in Bayesian Workflow.” Journal of the Royal Statistical Society Series A: Statistics in Society 182 (2): 389–402.
Galilei, Galileo. 1638. Dialogues Concerning Two New Sciences. 1954 translation by Henry Crew and Alfonso de Salvio. New York: Dover.
Gelman, Andrew, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. 2013. Bayesian Data Analysis. Third Edition. CRC Press.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.” arXiv, no. 2011.01808.
Gilks, Walter R, and Pascal Wild. 1992. “Adaptive Rejection Sampling for Gibbs Sampling.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 41 (2): 337–48.
Gneiting, Tilmann, Fadoua Balabdaoui, and Adrian E Raftery. 2007. “Probabilistic Forecasts, Calibration and Sharpness.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69 (2): 243–68.
Hoffman, Matthew D, and Andrew Gelman. 2014. “The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of Machine Learning Research 15 (1): 1593–623.
Jacob, Pierre E, John O’Leary, and Yves F Atchadé. 2020. “Unbiased Markov Chain Monte Carlo Methods with Couplings.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82 (3).
Laplace, Pierre Simon. 1774. “Mémoire Sur La Probabilité de Causes Par Les évènements.” Mémoires de Mathématique Et de Physique Presentés à l’Académie Royale Des Sciences 6: 621–56.
Laplace, Pierre-Simon. 1811. “Mé́moire Sur Les Approximations Des Formules Qui Sont Fonctions de Trè̀s Grands Nombres Et Sur Leur Application Aux Probabilité́s.” Mé́moires de l’Acadé́mie Royale Des Sciences de Paris Année 1809: 353–415.
———. 1814. Essai Philosophique Sur Les Probabilités. Paris: Courcier.
Lin, Hanti. 2022.
“Bayesian Epistemology.” In
The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta and Uri Nodelman,
Fall 2022.
https://plato.stanford.edu/archives/fall2022/entries/epistemology-bayesian/; Metaphysics Research Lab, Stanford University.
Little, Roderick J. 2006. “Calibrated Bayes: A Bayes/Frequentist Roadmap.” The American Statistician 60 (3): 213–23.
Livingstone, S, M Betancourt, S Byrne, and M Girolami. 2019. “On the Geometric Ergodicity of Hamiltonian Monte Carlo.” Bernoulli 25 (4A): 3109–38.
Lunn, David, Chris Jackson, Nicky Best, Andrew Thomas, and David Spiegelhalter. 2012. The BUGS Book: A Practical Introduction to Bayesian Analysis. CRC press/Chapman-Hall.
Lyapunov, Aleksandr. 1900--1901. “Nouvelle Forme Du Theorem Sur La Limie de La Probabilité.” Mémoires de l’Académie Impériale Des Sciences de St. Pétersbourg 11–12 (1900--1901).
Marin, Jean-Michel, Pierre Pudlo, Christian P Robert, and Robin J Ryder. 2012. “Approximate Bayesian Computational Methods.” Statistics and Computing 22 (6): 1167–80.
McElreath, Richard. 2023. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Second Edition. CRC Press.
Mill, John Stuart. 1882. A System of Logic: Raciocinative and Inductive. Eighth edition. New York: Harper & Brothers, Publishers.
Neal, Radford M. 2011. “MCMC Using Hamiltonian Dynamics.” In Handbook of Markov Chain Monte Carlo. Chapman; Hall/CRC.
Ramalho, Luciano. 2022. Fluent Python. Second Edition. O’Reilly Media, Inc.
Roberts, Gareth O, and Jeffrey S Rosenthal. 2004. “General State Space Markov Chains and MCMC Algorithms.” Probability Surveys 1: 20–71.
Rosenthal, Jeffrey S. 2006. A First Look at Rigorous Probability Theory. Worlds Scientific Publishing Co.
Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71 (2): 319–92.
Stan Development Team. 2023a.
“Stan Functions Reference.” https://mc-stan.org/docs/functions-reference/index.html.
VanderPlas, Jake. 2023. Python Data Science Handbook: Essential Tools for Working with Data. Second Edition. O’Reilly Media, Inc.
Wilkinson, Leland. 2005. The Grammar of Graphics. Second Edition. Springer.