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What is prevalence?

• A condition’s prevalence is the proportion of the population that has it

– e.g., if 32 of a population of 1000 has a condition, its prevalence is 3.2%.

• We’d like to estimate prevalence of individuals

1. with SARS-Cov-2 virus,

2. with COVID-19 disease,

3. who have developed antibodies to SARS-Cov-2, and

4. who are infectious.

• Viral infection (1) is the focus of this talk
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Why is estimation challenging?
• Conditions form multiple scales

– how much virus? which symptoms? how infectious? which antibodies?

• Measurements are noisy

– error: inaccurate tests, varying accuracy across sites, human judgement, . . .

– sampling: extrapolate from sample to population

• Population heterogeneity

– demographics: sex, age, existing medical conditions . . .

– behavior: social distancing, protective measures, food, travel, . . .

– geo-political: location, (local) government, climate, . . .

– temporal: prevalance evolves over time

– testing: availability, assignment, self selection, . . .
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Understanding sampling uncertainty

• Simulate: false positive results; N = 100, 2% false positive rate

– simulated false positives (100 simulations): 1 2 1 2 0 2 4 4 2 3 3 2 3 0 1 1 1 4 2
1 1 4 0 1 1 3 1 0 2 1 8 2 4 2 2 4 1 4 0 1 0 0 3 1 5 1 3 3 4 0 3 5 0 3 1 3 2 3 1 0 1 4 2 2 1
0 2 1 1 1 2 1 1 3 2 2 3 2 0 1 2 3 1 1 1 2 2 0 2 4 2 2 2 3 3 1 1 4 3 2

– min 0 (0%); max 8 (8%); std dev 1.4 (1.4%)

• Simulate: positive status; N = 3000, 1.5% prevalence

– simulated positives (100 simulations): 39 51 42 43 52 52 37 47 41 51 43 47 47
41 49 43 40 44 46 44 49 50 54 48 31 44 57 40 46 40 51 49 48 46 51 40 47 47 42 42
42 40 55 34 40 48 35 39 45 48 42 42 45 54 43 40 40 39 48 42 45 36 41 47 40 42 43
41 39 52 47 46 43 38 46 31 49 27 39 42 43 46 37 38 36 45 36 47 41 35 49 43 51 45
47 34 46 43 46 49

– min 27 (0.9%); max 57 (1.9%); std dev 5.5 (0.2%)
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Sensitivity and specificity of diagnostic tests

• Split accuracy based on status of individuals to account for test biases

• sensitivity is accuracy with positive status Pr[test = 1 | status = 1]
– sensitive tests have low false negative rates

• specificity is accuracy on negative status Pr[test = 0 | status = 0]
– specific tests have low false negative rates

• Examples from breast cancer diagnosis

– mammogram, MRI: high sensitivity, low specificity

– puncture biopsy: low sensitivity, high specificity

– this profile can’t catch breast cancer reliably until it’s too late
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Analyzing Serum PCR tests for SARS-CoV-2

• Sensitivity tests (known positives) Specificity tests (known negatives)

positives total sensitivity

78 85 92%
27 37 73%
25 35 71%

negatives total specificity

368 371 99%
30 30 100%
70 70 100%

1102 1102 100%
300 300 100%
311 311 100%
500 500 100%
198 200 99%

99 99 100%
29 31 94%

146 150 97%
105 108 97%

50 52 96%

• Prevalence test (unknown status)

positives total prevalence

50 3300 1.5%

• Goal: estimate of SARS-Cov-2 prevalence
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Adjust for test sensitivity & specificity

• Proportion of positive tests in sample must be adjusted.

– for test sensitivity and specifity

• Expected proportion of positive tests is

Pr[test = 1] = Pr[status = 1]× Pr[test = 1 | status = 1]
+ Pr[status = 0]× Pr[test = 1 | status = 0]

= prev× sens+ (1− prev)× (1− sens).

• Solve for expected prevalence given sensitivity, specificity, positive tests.

prev = pos+ spec− 1
sens+ spec− 1
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Uncertainty behind prevalence estimates

• Previous slide assumes sensitivity and specificity are known.

• Three forms of uncertainty lead to uncertainty in prevalence:

– test sensitivity and specificity are unknown and estimated from data,

– the result of a test is uncertain given the status of an individual, and

– tests are applied to only a sample of a population.

• The job of statistics is to adjust for bias and quantify uncertainty

– it’s not magic—it’s assumption driven
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Test sensitivty and specificity varies by site

• sensitivity and specificity are intrinsically anti-correlated

– adjusting thresholds trades one for the other

• sensitivity and specificity are correlated by site

– good procedures increase both; bad procedures decrease both

• perform a meta-analysis with a hierarchical model to

– estimate mean sensitivity and specificity of the test,

– estimate each site’s sensitivity and specificity,

– let amount of variation among sites control how much to pool data, and

– predict behavior in new test sites with no control cases.
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Stan Code (Data & Parameters)
data { parameters {

int<lower = 0> K_pos; real<lower = 0, upper = 1> prev;
int<lower = 0> N_pos[K_pos]; vector<lower = 0, upper = 1> sens[K_pos];
int<lower = 0> n_pos[K_pos]; vector<lower = 0, upper = 1> spec[K_neg];
int<lower = 0> K_neg; real<lower = 0, upper = 1> mu_sens;
int<lower = 0> N_neg[K_neg]; real<lower = 0> kappa_sens;
int<lower = 0> n_neg[K_neg]; real<lower = 0, upper = 1> mu_spec;

real<lower = 0> kappa_spec;
int<lower = 0> N_unk; vector<lower = 0, upper = 1> sens_unk
int<lower = 0> n_unk; vector<lower = 0, upper = 1> spec_unk;

} }
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Stan Code (Model)
model {

// hyperprior
prev ~ uniform(0, 1);
mu_spec, mu_sens ~ beta(9, 1);
kappa_sens, kappa_spec ~ exponential(0.5);

// prior (hierarchical)
sens, suns_unk ~ beta(mu_sens * kappa_sens, (1 - mu_sens) * kappa_sens);
spec, spec_unk ~ beta(mu_spec * kappa_spec, (1 - mu_spec) * kappa_spec);

// likelihood
n_pos ~ binomial(N_pos, sens);
n_neg ~ binomial(N_neg, spec);
n_unk ~ binomial(N_unk, prev * sens_unk + (1 - prev) * spec_unk);

}
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Running Stan Code
• Can be run from R, Python, Julia, MATLAB, Mathematica, or shell

Output for justthe prevalence estimate

mean se_mean sd 2.5% 50% 97.5% n_eff Rhat
prev 0.013 0 0.003 0.007 0.012 0.019 7795 1

• 95% posterior interval is (0.007, 0.019)

• Result is highly dependent on breadth of sensitivity hyperprior

– only 3 sensitivity tests available

• Result does not vary among a range of weakly regularizing hyperpriors

– e.g, assumiming variation among sites is on the order of 1–20%, but not 50%.

• Assuming no variation underestimates uncertainty
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Adjusting for non-representative samples

• Prevalence varies in subpopulations

– exposure risk by demographics; geographically by population density/travel;
differing metabolism by age, sex; political and social effects

• May not have a random sample

– because of purposeful stratified design; or convenience opt-in sample

• Either way, we use multilevel regression and post-stratifification to adjust

Step 0. fit a multilevel regression to the data (for regularization/pooling)

Step 1. estimate prevalence in each demographic subgroup

Step 2. weight prevalence in subgroups by their size

• Simulations in paper; real results awaiting Stanford IRB approval
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Further Reading

• Project home page: https://bob-carpenter.github.io/diagnostic-testing

• Stan home page: https://mc-stan.org

• Reports (comments welcome!)

– Gelman, A. & B. Carpenter. 2020. Bayesian analysis of tests with unknown speci-
ficity and sensitivity. DRAFT.

– Carpenter, B. & A. Gelman. 2020. Case study of seroprevalence meta-analysis.
DRAFT.

– Carpenter, B., A. Gelman, M. D. Hoffman, et al. (2017). Stan: A probabilistic
programming language. J. Stat. Soft. 76(1).

– Carpenter, B. 2016. Stan case study: Hierarchical partial pooling for repeated
binary trials. https://mc-stan.org/users/documentation/case-studies
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Stan Availability and Usage
• Platforms: Linux, Mac OS X, Windows

• Interfaces: R, Python, Julia, MATLAB, Mathematica

• Developers (academia & industry): 40+ (15+ FTEs)

• Users: tens or hundreds of thousands

• Companies using: hundreds or thousands

• Downloads: millions

• User’s Group: 3000+ registered; 6000+ non-bot views/day

• Books using: 10+

• Courses using: 100+

• Case studies about: 100+

• Articles using: 5000+

• Conferences: 4 (800+ attendance); StanCon 2020 will be online
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Some published applications of Stan
• Physical sciences: astrophysics, statistical mechanics, particle physics, organic chemistry,

physical ehmistry, geology, hydrology, oceanography, climatology, biogeochemistry, materials

science, . . .

• Biological sciences: molecular biology, clinical drug trials, entomology, pharmacology, tox-

icology, opthalmology, neurology, genomics, agriculture, botany, fisheries, epidemiology, pop-

ulation ecology, neurology, psychiatry, . . .

• Social sciences: econometrics (macro and micro), population dynamics, cognitive science,

psycholinguistics, social networks, political science, survey sampling, anthropology, sociology,

social work, . . .

• Other: education, public health, A/B testing, government, finance, machine learning, trans-

portation logistics, electrical engineering, mechanical engineering, civil engineering and trans-

portation, actuarial science, sports analytics, advertising attribution, marketing, . . .
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Industries using Stan
• Marketing attribution: Google, Domino’s Pizza, Legendary Ent.

• Demand forecasting: Facebook, Salesforce

• Financial modeling: Two Sigma, Point72

• Pharmacology & CTs: Novartis, Pfizer, Astra Zeneca

• (E-)sports analytics: Tampa Bay Rays, NBA, Sony Playstation

• Survey sampling: YouGov, Catalist

• Agronomy: Climate Corp., CiBO Analytics

• Real estate pricing models: Reaktor

• Industrial process control: Fero Labs
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Why is Stan so Popular?
• Community: large, friendly, helpful, and sharing

• Documentation: novice to expert; breadth of fields

• Robustness: industrial-strength code; user diagnostics

• Flexibility: highly expressive language; large math lib

• Portability: popular OS, language, and cloud support

• Extensibility: developer friendly; derived packages

• Speed: 2−∞ orders of magnitude faster

• Scalability: 2+ orders of magnitude more scalable

• Openness: permissive code and doc licensing
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