
LingPipe for 99.99% Recall 1

LingPipe for 99.99% Recall of Gene Mentions

Bob Carpenter
carp@alias-i.com

Alias-i, Inc., 181 North 11th St., Brooklyn, NY 11211, USA

Abstract

Text data mining over biomedical research literature is a needle-in-a-haystack problem. We
contend that first-best methods performing at 90% F-measure are insufficient, especially given that
performance is much worse for “unseen” phrases. In this paper, we recast the problem as one
of n-best search rather than first-best database population. We describe LingPipe’s HMM and
character language model-based chunkers, which extract mentions of genes in unseen MEDLINE
abstracts at 99.99% recall with greater than 50% mean-average precision. We provide evaluation
results in terms of received precision-recall curves on unseen data.

Keywords: named entity extraction, confidence ranking, text data mining, search, character language
models, hidden Markov models, forward-backward algorithm, A* algorithm

1 Introduction

Using a first-best entity extractor is akin to removing Google’s “Search” button and relying on “I’m
Feeling Lucky”. Even with state-of-the-art precision, recall is going to be unacceptable for individual
research or data mining purposes, which are often of the needle-in-a-haystack variety. Researchers
don’t need to find dozens or hundreds of references to a common pathway interaction, they need
to find the rare references that link two of the genes that are differentially expressed in a series of
microarray assays in an unexpected way.

Evaluations by F-measure overemphasize performance on common, oft-repeated mentions. When
performance is reported on mentions not included in the training data, error rates typically double or
more. The alternative we offer is n-best output with conditional probability estimates of the mention
given the text. This normalizes scores across sentences and documents, allowing the annotation
problem to be recast as a search problem. We believe that scoring metrics for search, such as average
precision and area under the receiver operating characteristic curve or log loss, are more appropriate
for evaluating real-world uses of text data mining than 0/1-loss (first-best).

LingPipe’s confidence-based chunkers are first-order hidden Markov models with emission proba-
bilities estimated by (padded) character language models. Using a generalized form of best-first search
over the lattice produced by the forward-backward algorithm, these chunkers are able to iterate an
arbitrary number of chunks in confidence-ranked order. Setting the threshold to 99.999% recall, these
chunkers run at 330,000 characters/second.

LingPipe also contains a longer-distance character-language-model based chunker that rescores n-
best whole-sentence analyses from the confidence-based chunker. We submitted a run of that chunker
to BioCreAtIvE, as well as confidence-based results. See [2] for a description of the rescoring model.

2 Carpenter

2 LingPipe’s Character Language Models

LingPipe’s classification, tagging, and entity extraction are all based on n-gram character language
models. Language models define probability distributions p(σ) over strings σ ∈ Σ∗ drawn from a fixed
alphabet of characters Σ. LingPipe adopts a standard random process approach to n-gram language
models, where probabilities are normalized over strings of a fixed length.

The process models factor the probability p(σc) of the string σ followed by the character c using the
chain rule: p(σc) = p(σ) ·p(c|σ). The n-gram Markov assumption restricts the context of a conditional
estimate p(c|σ) to the last n − 1 characters of σ, taking p(cn|σc1 · · · cn−1) = p(cn|c1 · · · cn−1).

The maximum likelihood estimator for this model is p̂ml(c|σ) = count(σc)/extCount(σ), where
count(σ) is the raw corpus count of the string σ and extCount(σ) =

∑
c count(σc) is the number of

single character extensions of σ.
LingPipe interpolates all orders of maximum likelihood estimates using Witten-Bell smoothing

[4]. The smoothed estimates are defined by p̂(c|dσ) = λ(dσ)p̂ml(c|dσ) + (1 − λ(dσ)(̂p)(c|σ) with the
boundary condition p̂() = 1/size(Σ) given by the uniform distribution. Witten and Bell smoothing
takes the interpolation ratio λ(σ) = extCount(σ)/(extCount(σ)+ θ · numExts(σ)), where numExts(σ) =
size({c|count(σc) > 0}). The free parameter θ, which controls the degree of smoothing, was fixed at
1.0 by Witten and Bell, but is set to the n-gram order by default in LingPipe.

Bounded language models assume distinct begin-of-string (BOS) and end-of-string (EOS) string
markers, setting p̂(σ) = p̂(σ EOS|BOS), where the conditional probaility is estimated using a process
model. With string boundary padding, normalization is over all strings, with

∑
σ∈Σ∗ p̂(σ) = 1.

3 HMMs with Character Language Model Emissions

LingPipe employs first-order HMMs for tagging, where the hidden states, as usual, correspond to
tags. Taggers assume a tokenization scheme that deterministically breaks an input into sequences
of tokens. The joint probablity of a token sequence σ1, . . . , σn and tag sequence t1, . . . , tn is de-
fined by p(σ1, . . . , σn, t1, . . . , tn) = p(t1, . . . , tn) · p(σ1, . . . , σn|t1, . . . , tn). A first-order HMM defines
p(t1, . . . , tn) = pstart(t1) ·

∏
i>1 p(ti|ti−1) · pend(tn); note the special estimates for start and end tags,

which ensures the sum of all token/tag sequences is 1.
In typical HMMs, emissions are estimated as multinomials, with some kind of special handling for

unseen tokens. LingPipe’s HMMs are unusual in that they estimate the probability p(σ|t) of the token
σ given the tag t using bounded character language models, one for each tag t. This has the advantage
of including general n-gram subword features within a fully generative probability model, as well as
defining a proper probability model normalized over the infinite set of possible string emissions.

LingPipe’s HMMs come with three decoders. The first is a standard Viterbi first-best decoder [4].
The second is a standard n-best decoder, which applies a Viterbi pass in a forward stage and then
uses these as A* estimates to perform an exact backward search to iterate over an arbitrary number of
unnormalized estimates of p(t1, . . . , tn|σ1, . . . , σn) The third decoder is a forward-backward decoder,
which computes conditional probabilities of a tag given an input sequence [4].

Consider input tokens σ1, . . . , σn. The forward value for a tag t and input position i is fwd(t, i) =
p(σ1, . . . , σi−1, tag(i) = t), which is the probability of the first i−1 input tokens resulting in the token σi

at position i being assigned tag t. This value is estimated in linear time using the forward algorithm, at
each stage computing the forward value as the sum of the values of all transitions from the previous for-
ward values. Backward values for position i and tag t are defined by bk(t, i) = p(σi, . . . , σn|tag(i) = t),
the conditional probability of the current and remaining tokens given that the current tag is t. Back-
ward probababilities are also easily computed in a single linear-time pass. Multiplying the forward and
backward values produces the joint probability of a tag given an input sequence, p(σ1, . . . , σn, tag(i) =
t) = fwd(t, i) · bk(t, i). The conditional probabiliy of position i receiving tag t is derived by marginal-
ization, p(tag(i) = t|σ1, . . . , σn) = p(σ1, . . . , σn, tag(i) = t)/

∑
t′ p(σ1, . . . , σn, tag(i) = t).

LingPipe for 99.99% Recall 3

4 HMM Encodings for Chunking with Confidence

It is common to encode a chunking problem, such as named entity extraction, as a tagging problem.
The typical tag set for a task like BioCreAtIvE would involve three tags: BG for the first token in
a gene mention, IG for other tokens in a gene mention, and O for tags that are not part of a gene
mention. It is possible to assign chunk probabilities with these tags, but the algorithm is tricky because
of the lack of end markers [3]. This encoding is also problematic for our first-order HMMs; they tend
to have difficulty finding boundaries, especially end boundaries.

We solve the search and estimation together using an encoding that is sensitive to position, using
tags BG (first token in mention), MG (internal token in mention), EG (last token in mention), and WG

(single token mention). Furthermore, we subcategorize the non-gene tags the same way (BO, MO, EO

and WO). This distinguishes the first and last words in gene mentions, as well as the words directly
preceding and following a gene mention.

With this encoding, the conditional probability of a subsequence of tokens being a gene mention
given the entire sequence, p(σi, . . . , σk : G|σ1, . . . , σn), is:

fwd(BG, i) · p̂(σi|BG) · (
∏

i<j<k

p̂(σj |MG) · p̂(MG|MG)) · p̂(EG|MG) · bk(EG, k)

The probability of a single token gene mention is just the conditional tag probability, which is the
product of the forward and backward estimates. LingPipe iterates the chunks in conditional proba-
bility order using an exact best-first search that keeps all partial entities on a priority queue, always
expanding the one with highest probability, and popping and returning an answer when one is found.

5 Results on BioCreAtIvE II Gene Mention Data

LingPipe was trained on the BioCreAtIvE II data (see [5] and this volume), using default settings.
Given the sentence p53 regulates human insulin-like growth factor II gene expression through active P4 pro-
moter in rhabdomyosarcoma cells, the phrases extracted as chunks and their conditional probability
estimates are p53: 0.999, P4 promoter: 0.733, insulin-like growth factor II gene: 0.606, human insulin-like
growth factor II gene: 0.382, active P4 promoter: 0.140, P4: 0.092, active P4: 0.009, insulin-like growth factor
II: 0.007, human insulin-like growth factor II: 0.004. The full precision versus recall curve is as follows:

Recall .02 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95 .99 .999 .9999
Precision .83 .76 .72 .69 .65 .61 .54 .46 .36 .25 .18 .11 .08 .07

This curve is computed by sorting all genes output in confidence order and then moving down the
list, computing precision and recall at each point; average precision just averages precision values. For
instance, LingPipe extracts 95% of all gene mentions in a list with 18% precision, and 99.99% of all
mentions with 7% precision. Average precision is 55%. Average precision increases with our longer-
distance resocring models, but precision at 99.99% suffers, we suspect due to the increased variance
and lowered bias. Overtraining helps on average, but hurts at the tail. We suspect discriminitive
models tuned for 0/1 loss would fare even worse.

References

[1] Alias-i. 2006. LingPipe 2.3.0. http://www.alias-i.com/lingpipe. (BioCreAtIvE II in sandbox).

[2] Carpenter, B. 2006. Character LMs for Chinese word segmentation and NER. SIGHAN.

[3] Culotta, A. and A. McCallum. 2004. Confidence estimation for information extraction. NAACL.

[4] Manning, C. and H. Schütze. 1999. Found. of Stat. Natural Language Processing. MIT Press.

[5] Tanabe, L, N. Xie, L. H. Thom, W. Matten, and W. J. Wilbur. 2005 BMC Bioinformatics.

