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Abstract: We describe the application of the LingPipe toolkit the same format as the word segmentation task.
(Alias-i 2006) to Chinese word segmentation and named en- _ _
tity recognition. We provide results for the third SIGHAN 3 LingPipe

Chinese language processing bakeoff (Levow 20B%)nea- LingPipe is a Java-based natural language process-
sures on the best performing corpora were .972 for word sedng toolkit distributed with source code by Alias-i
mentation and .855 for person/location/organization named(2006). For this bakeoff, we used two LingPipe
entity recognition. packages;om.aliasi.spell for Chinese word

. segmentation ancbm.aliasi.chunk for named-

1 Word Segmentation entity extraction. Both of these depend on the char-
Chinese is written without spaces between wordsacter language modeling packamgem.aliasi.Im :
For the word segmentation task, four training cor-and the chunker also depends on the hidden Markov
pora were provided with one sentence per line anéhodel packageom.alias.hnmm . The experi-

a single space character between words. Test dataents reported in this paper were carried out in
consisted of Chinese text, one sentence per lingvlay 2006 using (a prerelease version of) LingPipe
without spaces between words. The task is to in2.3.0.

sert single space characters between the words. For

this task and named entity recognition, we used.1 LingPipe’s Character Language Models
theuTrs-encoded Unicode versions of the corporaLingPipe provides:.-gram based character language
converted from their native formats by the bakeoffmodels with a generalized form of Witten-Bell smooth-

organizers. ing, which performed better than other approaches
. . to smoothing in extensive English trials (Carpen-
2 Named Entity Recognition ter 2005). Language models provide a probabil-

Named entities consist of proper noun mentiongty distribution P(o) defined for stringsr € X*

of persons PER), locations LOQ, and organiza- over a fixed alphabet of charactets We begin
tions (ORG. Two training corpora were provided. with Markovian language models normalized as
Each line consists of a single character, a singléandom processes. This means the sum of the prob-
space character, and then a tag. The tags were abilities for strings of a fixed length is 1.0.

the standard BIO (begin/in/out) encodirg-PER The chain rule factor®(oc) = P(o) - P(c|o)
tags the first character in a person entitipER for a charactee and stringr. Then-gram Marko-
tags subsequent characters in a personQasithr-  vian assumption restricts the context to the previ-
acters not part of entities. We segmented the datausn — 1 characters, takin@(c,,|ocy - - - ¢p—1) =
into sentences by taking Unicode chara@e3002 , P(cplci---cn—1).

which is rendered as a baseline-aligned small cir- The maximum likelihood estimator fer-grams
cle, as marking end of sentende@9. As judged is By (¢|o) = count(o¢) /extCount(c), wherecount(c)
by our own sentence numbers (see Figures 1 and the number of times the sequencewvas ob-
2), this missed around 20% of the sentence boundserved in the training data ardiCount(c) is the
aries in the City U NE corpus and 5% of the bound-number of single-character extensiongabserved:
aries in the Microsoft NE corpus. Test data is inextCount(c) = > count(coc).



Witten-Bell smoothing uses linear interpolation any segmentation equally likely according to the
to form a mixture model of all orders of maximum channel model, reducing decoding to finding the
likelihood estimates down to the uniform estimatehighest likelihood hypothesis consisting of the test
Py(c) = 1/|%|. The interpolation ratio\(do)  string with spaces inserted. This approach reduces
ranges between 0 and 1 depending on the contexio the cross-entropy/compression-based approach

. of (Teahan et al. 2000). Experiments showed that
P(cldo) = Ado)Pu(c|do) skewing these space-insertion/matching probabil-
+ (1= Xdo))P(c|o) ities reduces decoding accuracy.

Ple) = AQPul(c) 3.3 LingPipe’s Named Entity Recognition

+ (1=20)A/[%]) LingPipe 2.1 introduced a hidden Markov model
interface with several decoders: first-best (Viterbi),
n-best (Viterbi forward, A* backward with exact
Viterbi estimates), and confidence-based (forward-
backward).

LingPipe 2.2 introduced a chunking implemen-
tation that codes a chunking problem as an HMM
We takenumexts(o) = |{c|count(cc) > 0}| to be tagging problem using a refinement of the stan-
the number of different symbols observed follow-dard BIO coding. The refinement both introduces
ing o in the training data. The original Witten-Bell context and greatly simplifies confidence estima-
estimator set the hyperparameter= 1. Ling- tion over the approach using standard BIO cod-

Generalized Witten-Bell smoothing defines the
interpolation ratio with a hyperparameter

extCount(o)
extCount(o) + 6 - numExts(o)

AMo) =

Pipe’s default set§ equal to the:-gram order. ing in (Culotta and McCallum 2004). The tags
_ . _ areB- T for the first character in a multi-character
3.2 Noisy Channel Spelling Correction entity of typeT, M-T for a middle character in a

LingPipe performs spelling correction with a noisy-multi-character entityi- T for the end character in
channel model. A noisy-channel model consists o& multi-character entity, and/-T for a single char-
a source modeP;s (1) defining the probability of acter entity. The out tags are similarly contextual-
message, coupled with a channel mod&l.(c|)  ized, with additional information on the start/end
defining the likelihood of a signat given a mes- tags to model their context. Specifically, the tags
sageu. In LingPipe, the source modél; is a used areB-O- T for a character not in an entity
character language model. The channel mddel following an entity of type T|-O for any mid-
is a (probabilistically normalized) weighted edit dle character not in an entity, arfietO- T for a
distance (with transposition). LingPipe’s decodercharacter not in an entity but preceding a charac-
finds the most likely messageto have produced ter in an entity of typeT, and finally, W-O-T for
a signalo: argma&P(uya) = argma&P(u) - acharacter that is a single character between two
P(o|p). entities, the following entity being of typ€. Fi-

For spelling correction, the channBl(o|x) is  nally, the first tag is conditioned on the begin-of-
a model of what is likely to be typed given an in- sentence taggO9 and after the last tag, the end-
tended message. Uniform models work fairly wellof-sentence tagdOS is generated. Thus the prob-
and ones tuned to brainos and typos work even begbilities normalize to model string/tag joint prob-
ter. The source model is typically estimated fromabilities.
a corpus of ordinary text. In the HMM implementation considered here,

For Chinese word segmentation, the source mottainsitions between states (tags) in the HMM are
is trained over the corpus with spaces inserted. Theodeled by a maximum likelihood estimate over
noisy channel deterministically eliminates spaceshe training data. Tag emissions are generated by
so thatP.(o|u) = 1.0 if o is identical tox with  bounded character language models. Rather than
all of the spaces removed, afd otherwise. This the process estimat®(X), we useP(X#|#),
channel is easily implemented as a weighted editvhere# is a distinguished boundary character not
distance where deletion of a single space is 100%# the training or test character sets. We also train
likely (log probability edit “cost” is zero) and matchwith boundaries. For Chinese at the character level,
ing a character is 100% likely, with any other op-this bounding is irrelevant as all tokens are length
eration being 0% likely (infinite cost). This makes 1, so probabilities are already normalized and there



| Corpus | Encod | Sents| Chars| Unig | Words| Uniq || Test S| Test Ch| Unseen

City UHK | HKSCS (trad) || 57K || 4.3M [ 5113] 1.6M| 76K | 7.5K| 364K | 0.046%
Microsoft | gh18030 (simp)| 46K | 3.4M | 4768 1.3M | 63K || 4.4K| 173K | 0.046%
Ac Sinica | Big5 (trad) 709K | 13.2M | 6123 55M | 146K || 11.0K | 146K | 0.560%
Penn/Colo| CP936 (simp) | 19K | 1.3M | 4294 05M| 37K || 5.1K| 256K | 0.160%

Figure 1: Word Segmentation Corpora

| Corpus | Sents| Chars| Unig | LOC| PER| ORG] TestS| Test Ch| Unseen|

City UHK | 48K | 2.7M | 5113 || 48.2K | 36.4K | 27.8K || 7.5K | 364K | 0.046%
Microsoft | 44K | 2.2M | 4791 36.9K | 17.6K | 20.6K | 4.4K 173K | 0.046%

Figure 2: Named Entity Recognition Corpora

is no contextual position to take account of withinof OUT and type estimates, starting and ending
a token. In the more usual word-tokenized casewith an OUT estimate. We begin by condition-
it normalizes probabilities over all strings and ac-ing on the begin-of-sentence tag. Because the first
counts for the special status of prefixes and sufeharacter is in an entity, we do not generate any
fixes (e.g. capitalization, inflection). text, but rather generate a character indicating that
Consider the chunking consisting of the stringwe are done generating ti@UT characters and
John J. Smith lives in Seattleith John J. Smitla  ready to switch to generating person characters.
person mention anBeattlea location mention. In  We then generate the phradehn J. Smithn the
the coded HMM model, the joint estimate is: person model; note that type estimates always be-
PML(B-PER|BO$ ) pB-PER(JOhn#|#) gin gnd end with the:oyT character, essentially
- - making them bounded models. After generating
T (-PER [B-PER) - T1.pER (J717) the name and the character to end the entity, we
- By (I-PER [I-PER ) - Pl.pER (.#|#) Y.

- ! revert to generating more out characters, starting
D (E-PERI-PER ) - PE-pER(Smithd|#) from a person and ending with a location. Note

~

(
( 1
- P (B-O-PER|E-PER) - 'B-O-PER(lives#[#)  that we are generating the phrdaes ininclud-
- P (E-0-LOC|B-O-PER) - PE-0-LOC (in#|#) ing the preceding and following space. All such
- B (W-LOGQE-0-LOC) - Rv-Lod Seattle#[#)  gspaces are generated in tB&JTmodels for En-
- B (W-0-EOSW-LOQ - Fv-0-E0S - #(#) glish; there are no spaces in the Chinese input.
- Pu (EO§W-0-EO9 Next, we generate the location phrase the same

LingPipe 2.3 introduced an-best chunking im- way as the person phrase. Next, we generate the
plementation that adapts an underlyingpest chun- final period in theOUTmodel and then the end-
ker via rescoring. In rescoring, each of these outof-sentence symbol. Note that theéJTcategory’s
puts is scored on its own and the new best outlanguage model shoulders the brunt of the burden
put is returned. The rescoring model is a longerof estimating contextual effects. It conditions on
distance generative model that produces alternathe preceding type, so that the likelihoodlives
ing out/entity tags for all characters. The jointinis conditioned on following a person entity. Fur-
probability of the specified chunking is: thermore, the choice to begin an entity of type
location is based on the fact that it folloises
in. This includes begin-of-sentence and end-of-
sentence effects, so the model is sensitive to ini-
tial capitalization in the out model as a distribution
. of character sequences likely to foll®0OS Sim-
 Pour (-czos|czac) ilarly, the end-of-sentence is conditioned on the
where each estimator is a character language mogsteceding text, in this case a single period. The
and where ther are distinct characters not in the resulting model defines a (properly normalized)
training/test sets that encode begin-of-senteBE, joint probability distribution over chunkings.
end-of-sentenceH09, and type (e.gPER LOG
ORG. In words, we generate an alternating sequence

PQUT(CPER|CBDS)

- Pogr(John J. Smithcoyr|cour)
. ]?DUT( lives in croc|cper)

- Proc(Seattlecoyr|cour)



| Corpus | R| P| Fi|BestF || OOV | Roo |
City Uni Hong Kong .966 | .957| .961 972 4.0% | .555
Microsoft Research .959 | .955| .957 963 || 3.4% | .494
Academia Sinica 951 | .935| .943 958 | 4.2% | .389
U Penn and U Coloradg .919 | .895| .907 933 || 8.8% | .459

Figure 3: Word Segmentation Results (Closed Category)

’ Corpus H R ‘ P ‘ Fy ‘ BestF H Ploc ‘ Rioc H Peer ‘ Rper H PORG‘ RORG‘
City UniHK || .8417| .8690| .8551 .8903 || .8961| .8762| .8749| .8943| .6997| .8176
MS Research| .8097 | .8188| .8142 .8651| .8351| .8716| .7968| .8438| .7739| .6899

Figure 4: Named Entity Recognition Results (Closed Category)

4 Held-out Parameter Tuning dozen or so LingPipe-specific lines. The final run,
including unpacking, training and testing, took 45
minutes on a 512MB home PC; most of the time
s named-entity decoding.

We ran preliminary tests on MUC 6 English and
City University of Hong Kong data for Chinese
and found baseline performance around 72% anff@
rescored performance around 82%. The underlyg Results

ing model was designed to have good recall in genf)fficial bakeoff results for the four word segmen-
1 )
erating hypotheses. Over 99% of the MUC teStta[\tion corpora are shown in Figure 3, and for the

sentences had their correct analysis in a 1024-be . N
: : wo named entity corpora in Figure 4. Column
list generated by the underlying model. Neverthe- .
. labels areR for recall, P for precision, £} for
less, setting the number of hypotheses beyond 6
. ) L : . balancedF'-measureBest F; for the best closed
did not improve results in either English or Chi-

nese, so we reported runs withbest set to 64, system’sF; score OOVfor the out-of-vocabulary

We believe this is because the two language-modefc the test corpus, arfthoy for recall on the

) . out-of-vocabulary items. For the named-entity re-
based approaches make highly correlated rankmg -
o ults, precision and recall are also broken down by
decisions based on charactegrams. catedor
Held-out scores peaked with 5-grams for Chi- gory.
nese; 3-grams and 4-grams were not much worsg Distribution

and longem-grams performed nearly i_dentically. LingPipe may be downloaded from its homepage
We used 7500 as the number of distinct characipjias_i 2006). The code for the bakeoff is avail-

ters, though this parameter is not at all sensitive\able via anonymous CVS from the sandbox. An

to within an order of magnitude. We used Ling- Anache Ant makefile is provided to generate our

Pipe’s default of setting the interpolation parameyy,y oot submission from the official data distribu-
ter equal to thex-gram length; for the final eval- tion format

uationd = 5.0. Higher interpolation ratios favor

precision over recall, lower ratios favor recall. Val-

ues within an order of magnitude performed withReferences

1% F-measure and 2% precision/recall. Alias-i. 2006. LingPipe Natural
http://www.alias-i.com/lingpipe
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5 Bakeoff Time and Effort Carpenter, B. _2005. Scaling high-order character language
The total time spent on this SIGHAN bakeoff was models to gigabyte@ACL Software Workshop\nn Arbor.
about 2 hours for the word segmentation task an@ulotta, A. and A. McCallum. 2004. Confidence estimation
10 hours for the named-entity task (not including for information extractionHLT/NAACL 2004Boston.
writing this paper). We started from a working Teahan, W. J., Y. Wen, R. McNab, and I. H. Witten. 2000. A

; compression-based algorithm for Chinese word segmenta-
word Segmer.]tatlon system for the. last S.IGHAN' tion. Computational Linguistic26(3):375-393.
Most of the time was spent munging entity data,
with the rest devoted to held out analysis. The final-evow . Overview of the 3rd SIGHAN BakeofThis vol-
code was roughly one page per task, with only a



