
ALE FOR SPEECH: A TRANSLATION PROTOTYPE

Gerald Penn�

SFB 340
Kl. Wilhelmstr. 113

72074 Tübingen, Germany
gpenn@sfs.nphil.uni-tuebingen.de

Bob Carpenter
Bell Laboratories

600 Mountain Avenue
Murray Hill, NJ 07974, USA
carp@research.bell-labs.com

In this paper, we describe The Attribute Logic Engine
(ALE) and enhancements to it that enable it to serve as a
complete grammatical infrastructure for applications such
as spoken language translation. We indicate how ALE was
expanded and combined with off-the-shelf speech com-
ponents to develop an application that translates English
speech to German speech. The translation operates by
way of a semantic representation based on typed feature
structures, with information on thematic roles (“who did
what to whom”) and agreement information that can be
used to guide search in less restricted domains and map
expressions to more felicitous (but semantically equiva-
lent) constructions in the target language than a more lit-
eral, surface-oriented method would admit.

INTRODUCTION

The goal of the present work was to provide an illustra-
tion of how large-scale dialogue systems can incorporate
and benefit from a fine-grained representation of mean-
ing, and dispel the myth that such systems are inherently
inefficient. By “fine-grained” representation, we specif-
ically refer to one in which participants and their rela-
tion to each other as described in a sentence, i.e., “who
did what to whom,” are explicitly represented along with
some syntactic information, such as gender and number.
With the right representation and the right computational
treatment of it, dialogue systems that avail themselves of
meaning representations not only can operate at a com-
petitive level of efficiency, but can actually stand at an
advantage over shallower approaches, e.g., cosine similar-
ity measures, aligning parallel texts, in applications with
less restricted or unrestricted domains, where the semantic
representation itself can actually be used to guide search.
It is also of benefit in applications that, by their own na-
ture, require the interpretation or preservation of meaning
down to a very fine level, such as in machine translation
or, in certain domains, query formulation. Such a repre-
sentation can also be used as an interlingua to improve the

�We gratefully acknowledge Bernd M¨obius and Jialin Zhong at Bell
Laboratories for providing the face animation and German TTS, respec-
tively, that were used in this system.

scalability of an application across multiple languages.
The application examined further here is an English-

to-German speech-to-speech machine translation system.
The system is intended for use in medium-scale domains
that require robustness and precise semantic representa-
tions, and for easy portability across such domains. A typ-
ical system in which this could be embedded, for example,
would be telephone transaction system, such as an auto-
mated telephone banking center. It is, in fact, comparable
in its intentions to the system(s) currently under develop-
ment in the Verbmobil project, only it was achieved here
using off-the-shelf components that are already available.
The system was built around the Attribute Logic Engine
(ALE) [5] both for parsing English input into a semantic
representation based on the logic of typed feature struc-
tures, and for concept-based generation in German us-
ing two closely related grammars, one for each language.
The logic, ALE, the grammars, and their integration with
speech components are described in further detail in the
sections that follow.

TYPED FEATURE STRUCTURES

Typed feature structures [1] are a generalization of the
frames found in artificial intelligence classifiers and par-
tial record structures in databases. They were first intro-
duced by linguists to characterize natural language gram-
mars in terms of well-formedness constraints [7]. The
logic of typed feature structures is strongly typed, with the
types being arranged in a meet semi-lattice that organizes
or classifies the information that the types encode. Less
specific types in the lattice can also be used as a logical
means of vaguely specifying one or more possible types
that can be refined later without non-deterministic search.
For example, in Figure 1, the typenon dat can be used
to describe all possible grammatical cases except the da-
tive (which, in certain constructions in German, must be
treated specially), and can be refined by unification later
to any one of the other cases.

Typed feature structures can also bear features. Every
meet semi-lattice of types must come with a set ofap-
propriateness conditions, that specifies, for each type, the
set of features for which every object of that type can and



case
non dat

nom acc gen dat

Figure 1: A type semi-lattice for grammatical case.

2
6666666666664

throwing

THROWING

2
664

index
PERSON 1 person
NUMBER singular
GENDER masculine

3
775

THROWN

2
664

index
PERSON 1

NUMBER singular
GENDER neuter

3
775

3
7777777777775

Figure 2: A semantic representation of throwing with
structure-sharing.

must have a value. As a result, while objects can acquire
more features as their type is refined, all of the objects of
a given type have the same arity. This gives typed fea-
ture structures many of the advantages that underspecified
structures can have, such as a compact representation and
a terse description language, along with many of those of
fixed arity terms such as Prolog terms, in which the ex-
act number and position of feature values in an internal
representation can be determined at compile-time.

Typed feature structures also allow forstructure-
sharing, a kind of coreference that allows for further
underspecification, in that two features can be said to
have the same value without having to commit to what
that value is. Figure 2, for example, illustrates a fea-
ture structure of typethrowing, with appropriate features,
THROWERandTHROWN — all throwing events must have
these. Their values’ respectivePERSONfeatures have the
same value, as indicated by the numeric tag, although it is
still unknown whether this value is of typefirst, second,
or third, as indicated by the less specific type,person.

THE ATTRIBUTE LOGIC ENGINE

ALE is a logic programming language very similar to Pro-
log, except that its terms are typed feature structures. It is
freely available, fully documented, and has been widely
adopted (over 150 research centers and universities) for
implementing feature-based grammars, The combination
of typing and appropriateness allows ALE to compile ex-
tensively all of the basic operations it performs on typed
feature structures [4]. The most important basic operation
is unification, the consistent combination of partial infor-
mation from two or more feature structures.

ALE not only can perform the same resolution method
as Prolog over programs, but also has a built in bottom-
up chart parser for tabulating grammatical substrings [6]
and a semantic-head-driven generator [9]. Both of these
are guided by (reversible) phrase structure rules, in which

structure-sharing enforced by unification is used to com-
bine pieces of partial information from feature-structure
representations of subphrases to compose a representation
of a larger phrase.

ALE is implemented in Prolog and compiles all basic
operations over feature structures into Prolog code, which
is then submitted to a Prolog compiler. ALE compilation
can thus be viewed as a preprocessing step similar to what
YACC performs with grammars before C compilation.
Since ALE 3.0 was released in early 1998, ALE has been
enhanced in a number of ways that improve its suitabil-
ity for large-scale applications. Perhaps most importantly,
its more extensive compilation at the Prolog level and bet-
ter indexing of predicates has a greatly improved perfor-
mance on both large-scale parsing and large-scale gener-
ation. That compilation includes tracking the binding of
ALE variables to determine where structure-sharings can
be made safely at compile-time, and compilation of ALE
predicates all the way down to parallel Prolog predicates
to eliminate the overhead of a run-time meta-interpreter.
ALE also compiles its parsing code so that all tabulated
substrings can be maintained on the heap to avoid exces-
sive copying of potentially large feature structures from
Prolog’s internal database.

ALE also incorporates a numerical component. Any
number can serve as a featureless, maximally specific
type in an ALE feature structure. These numbers can be
probabilities that can be used to resolve non-determinism
preferentially, or “goodness” estimates to compute thresh-
olds for a beam-filtered search during parsing or gener-
ation. In fact, typed feature structures can also be used
at a lower linguistic level as representations of candidate
phonemic words in a word lattice or representations for
phones themselves. We did not train a statistical model at
any level for the present machine translation component,
however.

ALE has a Prolog-based module system so that more
than one grammar can be used at once. It has also has uni-
versal implicational constraints with type antecedents for
a limited degree of constraint logic programming func-
tionality, hooks to Prolog, and a macro facility, as well as
several tools for handling large lexica, including a lexical
rule formalism.

GRAMMARS

Both the English and the German grammars were im-
plemented using a hybrid of analyses taken from Head-
driven Phrase Structure Grammar (HPSG) [8] and multi-
modal categorial grammar [2, 3]. The semantic represen-
tations themselves consist of a feature-based encoding of
terms from the untyped lambda calculus, in which argu-
ment positions conventionally encode the semantic roles
of participants, e.g., the innermost argument of a verbal
phrase’s semantics always stands for the agent, and func-
tional symbols themselves are chosen from semantic con-
stants (types) to provide lexical semantic information.



In keeping with categorial grammar, only a few basic
syntactic categories were assumed, but were closed under
the functional categories of categorial grammar to provide
the categories of heads that take arguments to either the
left (n) or right (=). For example, intransitive verbs can
normally be assigned a categorynpns because they take
noun phrases to their left in a string to form sentences. In
addition, appropriate features were used to attach syntac-
tic agreement features where needed, to attach the seman-
tic labellings from the lambda calculus to their phrases’
representations, as well as to mark barrierhood for quan-
tificational andwh-islands.

The grammars handle quantification, interrogatives and
relative clauses by means of a higher-order empty cat-
egory that mimics the effect of multi-modal categorial
grammar analyses of long-distance phenomena. They also
incorporate an analysis of coordination that is completely
integrated with these effects, as well as a productive gram-
mar of number terms.

German was chosen as the target language in order to
avoid having to cope with the freer word order of German
syntax. The German grammar thus generates (and recog-
nizes) expressions within a limited but grammatical range
of word-order possibilities.

Both grammars consist of roughly 150 forms, closed
under inflectional paradigms and the production rules of
the number term grammar.

INTEGRATION

The English grammar’s lexicon was exported by ALE
at compile-time and converted by the Bell Labs Lexical
Tools to produce English pronunciations. Total compi-
lation time, including loading the system, compiling both
grammars, and this conversion takes approximately 5 min-
utes on an single SGI Indy.

For speech-to-speech translation, ALE’s parser was
configured to take a list ofn best paths through a word
lattice, and successively parse each one in order with the
English grammar until one is found with a grammatical
parse. Once a path with a grammatical parse is found,
ALE will backtrack through all possible parses for that
path, if necessary.

Speaker independent continuous speech recognition
for English is handled by Entropics Cambridge Re-
search Labs’ (ECRL) HTK API. We used the ECRL
context-independent phoneme models for American En-
glish, which provide a standard set of phonemic represen-
tations, with 17 vowels and 24 consonants in addition to
silence models. The only difference from the set of phones
provided by the Bell Labs TTS system is that the ECRL
set includes the dipthong ’oi’ as in ’noise’. The signal pro-
cessing involved 12 mel cepstral features, 12� features,
12�2 features and one total energy feature, with cepstral
mean subtraction. A 10ms frame rate was used smoothed
with a 25ms Hamming window.

The 25 best paths through resulting lattice are piped to

ALE and parsed as described above. The resulting fea-
ture structure — our fine grained representation, contain-
ing syntactic and semantic information — is then passed
to ALE’s generator, which produces annotated text with
the German grammar. Although we did not do so for
our prototype, another potential use for ALE is in direct
content-to-speech generation where a more sophisticated
markup language for the output could be used to guide the
synthesizer.

German synthesis from the text ALE generates is car-
ried out using the Bell Labs Multilingual Text-to-Speech
system [10], enhanced with several text tools1 and syn-
chronized with a simple talking head.

EVALUATION

The entire system runs in real time on a single SGI Indy.
Because the null model was used with HTK, the speech
recognition phase is by far the slowest. The benchmarks
given here are for the text-to-text translation only, i.e., the
part that ALE itself was responsible for; and were made
on a dual-250-MHz SPARC Ultra 450 with 512 MB of
RAM.

There are two kinds of performance improvements that
have resulted from this research program to be measured.
The first (Figure 3) is the relative improvement in parsing
time between the present English grammar (CG/HPSG)
and the HPSG grammar distributed with ALE, a naive,
straightforward implementation of the English grammar
presented in the first five chapters of Pollard and Sag’s
seminal book on HPSG [8] with roughly the same cover-
age. Both grammars are highly lexicalized, with large fea-
ture structures (between 100 and 200 nodes), and only a
handful of phrase structure rules (4 for the new grammar,
9 for the HPSG grammar). The naive HPSG grammar,
however, massively overgenerates with respect to its rep-
resentation of quantifier scoping effects, and relies heavily
on recursive data types, which results in much slower per-
formance. The parsing times are taken from the improved
version of ALE, to be released soon as ALE 3.2, over 11
sentences of various parsing complexities. The number
of edges in the parsing chart is also provided (Figure 4)
for each grammar as a measure of parsing complexity and
overgeneration. The integration of categorial-grammar-
style analyses is directly responsible for the improvement,
which ranges from a factor of 5.7 on the smallest parse
to a factor of 323.5 on the largest. The comparison can-
not be made for generation, because the HPSG grammar’s
analysis of quantification is not easily reversible.

The second performance improvement has been in the
system itself. To measure this, we consider both gram-
mars running in ALE 3.0 on the same benchmarks, also
shown in Figure 3. The performance improvement be-
tween systems ranges between factors of 3 and 5.8 on the

1The text tools, however, are not distributed with the Bell Labs Mul-
timedia TTS system that is available for purchase. These are the only
part of the system that is not off-the-shelf.



10

100

1000

10000

100000

1e+06

1e+07

2 4 6 8 10

T
im

e 
   

   
 (

m
s)

Sentence Number

HPSG (ALE 3.0)
HPSG (ALE 3.2)

CG/HPSG (ALE 3.0)
CG/HPSG (ALE 3.2)

Figure 3: Grammar/System Performance: Time.

10

100

1000

10000

2 4 6 8 10

E
dg

es

Sentence Number

HPSG
CG/HPSG

Figure 4: Grammar Performance: Edges.

CG/HPSG grammar and of 3.6 and 124.7 on the HPSG
grammar. These factors do not include the relative im-
provements between the grammars. On the largest parse,
the new CG/HPSG grammar running on ALE 3.2 has a
combined improvement over the HPSG grammar running
on ALE 3.0 of a factor of 40,340.4.

The difference in performance between system ver-
sions made in semantic-head-driven generation has been
far more modest, to a great extent because ALE 3.0 used
an indexing strategy for semantic values of lexical entries
that is currently not supported in the new version of the
system. For lack of space, a more detailed comparison
cannot be made here; but the performance of the genera-
tor over the German grammar on ALE 3.2 over a test suite
of 64 semantic descriptions of grammatical sentences has
yielded generation times of up to 820 ms with an average
time of 214 ms.

CONCLUSION

We have shown that ALE can be integrated with off-
the-shelf speech components to construct an English-to-
German speech-to-speech machine translation component
over a significant grammar fragment. The transfer be-
tween grammars is through a fine-grained representation
of meaning based on the logic of typed feature structures.
The slowest part of the system was speech recognition be-
cause of our election to use context-independent phoneme
models; but even then, the performance of the system has
proven to run in real time on available hardware.

One direction that must be investigated in the near fu-
ture is the use of ALE’s numerical component for proba-
bilistic language modelling for better parsing and gener-
ation. The integration of statistically derived weights is
necessary to improve the efficiency of non-determinism
resolution further. An important related issue is the au-
tomated acquisition of feature-structure-based grammars
and categorial grammars through machine learning tech-
niques.

REFERENCES

[1] B. Carpenter.The Logic of Typed Feature Structures.
Cambridge, 1992.

[2] B. Carpenter. A type-logical grammar for German,
1998. Current Topics in Constraint-based Theories
of Germanic Syntax, ESSLLI’98, Saarbr¨ucken.

[3] B. Carpenter.Type Logical Semantics. MIT Press,
1998.

[4] B. Carpenter and G. Penn. Compiling typed
attribute-value logic grammars. In H. Bunt and
M. Tomita, editors,Recent Advances in Parsing
Technologies. Kluwer, 1996.

[5] B. Carpenter and G. Penn. ALE 3.1 User’s
Manual, September 1998. Available from the
ALE Homepage:
http://www.sfs.nphil.uni-tuebingen.
de/ �gpenn/ale.html .

[6] G. Gazdar and C. Mellish.Natural Language Pro-
cessing in PROLOG: an introduction to computa-
tional linguistics. Addison-Wesley, 1990.

[7] C. Pollard and I. Sag.Information-based Syntax and
Semantics. CSLI Publications, 1987.

[8] C. Pollard and I. Sag.Head-driven Phrase Structure
Grammar. Chicago, 1994.

[9] S. M. Shieber, C. N. Pereira, G. van Noord, and R. C.
Moore. Semantic-head-driven generation.Compu-
tational Linguistics, 16(1):30–42, 1990.

[10] R. Sproat. Multilingual Text-to-Speech Synthesis:
the Bell Labs Approach. Kluwer, 1997.


