Tutorial Overview: Outline

Part I

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

Part II

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

June 1999

Discourse & Dialogue Processing

- Discourse interpretation:
 - Understand what the user really intends by interpreting utterances in context
- Dialogue management:
 - Determine system goals in response to user utterances based on user intention
- Response generation:
 - Generate natural language utterances to achieve the selected goals

June 1999 63

Discourse Interpretation

- Goal: understand what the user really intends
- Example: Can you move it?
 - What does "it" refer to?
 - Is the utterance intended as a simple yes-no query or a request to perform an action?
- Issues addressed:
 - Reference resolution
 - Intention recognition
- Interpret user utterances in context

June 1999

Reference Resolution

- U: Where is A Bug's Life playing in Summit?
- S: A Bug's Life is playing at the Summit theater.
- U: When is it playing there?
- S: It's playing at 2pm, 5pm, and 8pm.
- U: I'd like 1 adult and 2 children for the first show. How much would that cost?

65

- Knowledge sources:
 - Domain knowledge
 - Discourse knowledge
 - World knowledge

Reference Resolution: In Theory

- Focus stacks:
 - Maintain recent objects in stack
 - Select objects that satisfy semantic/pragmatic constraints starting from top of stack
 - May take into account discourse structure
- Centering:
 - Backward-looking center (Cb): object connecting the current sentence with the previous sentence
 - Forward-looking centers (Cf): potential Cb of the next sentence
 - Rule-based filtering & ranking of objects for pronoun resolution

June 1999

Reference Resolution: In Practice

- Non-existent: does not allow the use of anaphoric references
- Allows only simple references:
 - utilizes the focus stack reference resolution mechanism
 - does not take into account discourse structure information
- Example:

U: Where is A Bug's Life playing in Summit?

> Summit A Bug's Life

June 1999

Intention Recognition B: I have to wash my hair.

B's utterance should be interpreted as an **acceptance** of A's proposal.

A: Would you like to go to the hairdresser?

June 1999 71

A: What's that smell around here?

• B's utterance should be interpreted as an answer to A's question.

A: Would you be interested in going out to dinner tonight?

• B's utterance should be interpreted as a **rejection** of A's proposal.

June 1999 73

Intention Recognition (Cont'd)

- Goal: to recognize the intent of each user utterance as one (or more) of a set of dialogue acts based on context
- Sample dialogue actions:
 - Switchboard DAMSL
 - Conventional-closing
 - Statement-(non-)opinion
 - Agree/Accept
 - Acknowledgment
 - Yes-No-Question/Yes-Answer Clarify-Query/Answer
 - Non-verbal
 - Abandoned

- Verbmobil
 - Greet/Thank/Bye
 - Suggest
 - Accept/Reject
 - Confirm

 - Give-Reason
 - Deliberate
- On-going standardization efforts (Discourse Resource Initiative)

June 1999

Intention Recognition: In Theory

- Knowledge sources:
 - Overall dialogue goals
 - Orthographic features, e.g.:
 - punctuation
 - cue words/phrases: "but", "furthermore", "so"
 - transcribed words: "would you please", "I want to"
 - Dialogue history, i.e., previous dialogue act types
 - Dialogue structure, e.g.:
 - · subdialogue boundaries
 - dialogue topic changes
 - Prosodic features of utterance: duration, pause, F0, speaking rate

Intention Recognition: In Theory (Cont'd)

- Finite-state dialogue grammar:
 - e.g.

- Plan-based discourse understanding:
 - Recipes: templates for performing actions
 - Inference rules: to construct plausible plans
- Empirical methods:
 - Probabilistic dialogue act classifiers: HMMs
 - Rule-based dialogue act recognition: CART, Transformation-based learning

June 1999

76

Intention Recognition: In Practice

- Makes assumptions about (high-level) task-specific intentions: e.g.,
 - Call routing: giving destination information
 - ATIS: requesting flight information
 - Movie information system: movie showtime or theater playlist information
- Does not allow user-initiated complex dialogue acts, e.g. confirmation, clarification, or indirect responses

S1: What's your account number?

U1: Is that the number on my ATM card?

S2: Would you like to transfer \$1,500 from savings to checking?

U2: If I have enough in savings.

June 1999

77

Lucent Technologies

Intention Recognition: In Practice (Cont'd)

- User utterances can play one of two roles:
 - Identify one of a set of possible task intentions
 - Provide necessary information for performing a task
- Based on either keywords in an utterance or its syntactic/semantic representation
- Maps keywords or representations to intentions using:
 - Template matching
 - Probabilistic model
 - Vector-based similarity measures

June 1999

Intention Recognition: Example

- U: What time is A Bug's Life playing at the Summit theater?
- Using keyword extraction and vector-based similarity measures:

79

- Intention: Ask-Reference: time
- Movie: A Bug's Life
- Theater: the Summit quadplex

Tutorial Overview: Outline

Part I

Part II

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- · Data collection

June 1999

80

Dialogue Management: Motivating Examples

- Dialogue 1:
 - S: Would you like movie showtime or theater playlist information?
 - U: Movie showtime.
 - S: What movie do you want showtime information about?
 - U: Saving Private Ryan.
 - S: At what theater do you want to see Saving Private Ryan?
 - U: Paramount theater.
 - S: Saving Private Ryan is not playing at the Paramount theater.

June 1999

DM: Motivating Examples (Cont'd)

- Dialogue 2:
 - S: How may I help you?
 - U: When is Saving Private Ryan playing?
 - S: For what theater?
 - U: The Paramount theater.
 - S: Saving Private Ryan is not playing at the Paramount theater, but it's playing at the Madison theater at 3:00, 5:30, 8:00, and 10:30.

June 1999

82

DM: Motivating Examples (Cont'd)

- Dialogue 3:
 - S: How may I help you?
 - U: When is Saving Private Ryan playing?
 - S: For what theater?
 - U: The Paramount theater.
 - S: Saving Private Ryan is playing at the Fairmont theater at 6:00 and 8:30.
 - U: I wanted to know about the Paramount theater, not the Fairmont theater.
 - S: Saving Private Ryan is not playing at the Paramount theater, but it's playing at the Madison theater at 3:00, 5:30, 8:00, and 10:30.

June 1999

Comparison of Sample Dialogues

- Dialogue 1:
 - System-initiative
 - Implicit confirmation
 - Merely informs user of failed query
 - Mechanical
 - Least efficient

- Dialogue 2:
 - Mixed-initiative No confirmation
 - Suggests alternative when query fails
 - More natural
 - Most efficient

84

- Dialogue 3:
 - Mixed-initiative
 - No confirmation
 - Suggests alternative when query fails
 - More natural
 - Moderately efficient

June 1999

Dialogue Management

- Goal: determine what to accomplish in response to user utterances, e.g.:
 - Answer user question
 - Solicit further information
 - Confirm/Clarify user utterance
 - Notify invalid query
 - Notify invalid query and suggest alternative
- Interface between user/language processing components and system knowledge base

June 1999

Dialogue Management (Cont'd)

- Main design issues:
 - Functionality: how much should the system do?
 - Process: how should the system do them?
- Affected by:
 - Task complexity: how hard the task is
 - Dialogue complexity: what dialogue phenomena are allowed
- Affects:
 - robustness
 - naturalness
 - perceived intelligence

June 1999

Task Complexity

- · Application dependent
- Examples:

Weather Call Information Automatic Travel University Planning Routing Banking Course **ATIS** Advisement Simple Complex

- Directly affects:
 - Types and quantity of system knowledge
 - Complexity of system's reasoning abilities

Dialogue Complexity

- · Determines what can be talked about:
 - The task only
 - Subdialogues: e.g., clarification, confirmation
 - The dialogue itself: meta-dialogues
 - Could you hold on for a minute?
 - What was that click? Did you hear it?
- Determines who can talk about them:
 - System only
 - User only
 - Both participants

June 1999

88

Dialogue Management: Functionality

- Determines the set of possible goals that the system may select at each turn
- At the task level, dictated by task complexity
- At the dialogue level, determined by system designer in terms of dialogue complexity:

89

- Are subdialogues allowed?
- Are meta-dialogues allowed?
- Only by the system, by the user, or by both agents?

June 1999

Lucevit Technologies tel Lets Innuerions

DM Functionality: In Theory

- Task complexity: moderate to complex
 - Travel planning
 - University course advisement
- Dialogue complexity:
 - System/user-initiated complex subdialogues
 - Embedded negotiation subdialogues
 - · Expressions of doubt
 - Meta-dialogues
 - Multiple dialogue threads

June 1999

DM Functionality: In Practice

- · Task complexity: simple to moderate
 - Call routing
 - Weather information query
 - Train schedule inquiry
- Dialogue complexity:
 - About task only
 - Limited system-initiated subdialogues

June 1999

Dialogue Management: Process

- Determines how the system will go about selecting among the possible goals
- At the dialogue level, determined by system designer in terms of initiative strategies:
 - System-initiative: system always has control, user only responds to system questions
 - User-initiative: user always has control, system passively answers user questions
 - Mixed-initiative: control switches between system and user using fixed rules
 - Variable-initiative: control switches between system and user dynamically based on participant roles, dialogue history, etc.

June 1999

DM Process: In Theory

- Initiative strategies:
 - Mixed-initiative
 - Variable-initiative
- Mechanisms for modeling initiative:
 - Planning and reasoning
 - Theorem proving
 - Belief modeling
- Knowledge sources for modeling initiative:
 - System beliefs, user beliefs, and mutual beliefs
 - System domain knowledge
 - Dialogue history
 - User preferences

June 1999

DM Process: In Practice

- Initiative strategies:
 - User-initiative
 - System-initiative
 - Mixed-initiative
 - Variable-initiative
- Mechanisms for modeling initiative:
 - System and mixed-initiative: finite-state machines
 - Variable-initiative: evidential model for computing initiative
 - Knowledge sources:
 - Dialogue history: e.g. user fails to make progress in task
 - Participant roles: advisor/advisee vs. collaborators
 - Features of current utterance: e.g.: ambiguous utterance, underspecified utterance

June 1999

Lucent Technologi tel Lab Innoen

Dialogue Management: Summary

- In theory:
 - Focuses on developing algorithms for addressing difficult dialogue phenomena in complex tasks
- In practice:
 - Focuses on developing robust, real-time dialogue strategies for handling common dialogue phenomena in simpler tasks

June 1999 95

cont Yechnologies

Dialogue Management: Example

- System for providing movie showtime and theater playlist information
- Functionality:
 - Task: provide simple movie information
 - Dialogue: allow system-initiated subdialogues
- Process:
 - Variable-initiative

June 1999

Dialogue Management Example (Cont'd)

- <U has task & dialogue initiative>
- U: When is Antz playing at the Fairmont theater?
 - <S has dialogue initiative (low score for theater)>
 - <goal: confirm Paramount theater>
- S: Did you say the Paramount theater?
- U: No. the Fairmont theater.
 - <S has no initiative>
 - <goal: answer user question>
- S: Antz is playing at the Fairmont theater at 7pm.
- U: When is it playing at the Summit theater?
 - <S has task & dialogue initiative>
 - <goal: notify failure & suggest alternative>
- S: Antz is not playing at the Summit theater, but it's playing at the AMC theater in Summit at 8pm.

June 1999

Tutorial Overview: Outline

Part I

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

Part II

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

June 1999

98

Response Generation

U: Is Saving Private Ryan playing at the Chatham cinema?

June 1999

S: No, it's not.

• S provides elliptical response

- S: No, Saving Private Ryan is not playing at the Chatham cinema.
- S provides full response (which provides grounding information)

June 1999 101

- S: No, Saving Private Ryan is not playing at the Chatham cinema; the theater's under renovation.
- S provides full response and supporting evidence

June 1999

102

Response Generation (Cont'd)

- Goal: generate natural language utterances to achieve goal(s) selected by the dialogue manager
- Issues:
 - Content selection: determining what to say
 - Surface realization: determining how to say it
- **Generation gap**: discrepancy between the actual output of the content selection process and the expected input of the surface realization process

June 1999

Content Selection

- Goal: determine the propositional content of utterances to achieve goal(s)
- Examples:
 - Antz is not playing at the Maplewood theater; [Nucleus]
 - Would you like the suite? [Nucleus]
 - Can you get the groceries from the car? [Nucleus]

June 1999

- the theater's under renovation. (evidence) [Satellite]
- It's the same price as the regular room. (motivation) [Satellite]

104

- The key is on the dryer. (enablement) [Satellite]

June 1999

Content Selection: In Theory

- Knowledge sources:
 - Domain knowledge base
 - User beliefs
 - User model: user characteristics, preferences, etc.
 - Dialogue history
- · Content selection mechanisms:
 - Schemas: patterns of predicates
 - Rule-based generation
 - Plan-based generation:
 - Recipes: templates for performing actions
 - Planner: to construct plans for given goal
 - Case-based reasoning

June 1999

Content Selection: In Practice

- Knowledge sources:
 - Domain knowledge base
 - Dialogue history
- Pre-determined content selection strategies:
 - Nucleus only, no satellite information
 - Nucleus + fixed satellite

Surface Realization

- Goal: determine how the selected content will be conveyed by natural language utterances
- Examples:
 - Antz is showing (shown) at the Maplewood theater.
 - The Maplewood theater is showing Antz.
 - It is at the Maplewood theater that Antz is shown.
 - Antz, that's what's being shown at the Maplewood theater.
- Issues:
 - Clausal structure construction
 - Lexical selection

June 1999

Surface Realization: In Theory

- Typical surface generator requires as input:
 - Semantic representation to be realized
 - Clausal structure for generated utterance
- Surface realization component utilizes a grammar to generate utterance that conveys the given semantic representation

109

Surface Realization: In Practice

- Canned utterances:
 - Pre-determined utterances for goals; e.g.:
 - Greetings: Hello, this is the ABC bank's operator.
 - Repeat: Could you please repeat your request?
 - Facilitates pre-recorded prompts for speech output
- Template-based generation:
 - Templates for goals; e.g.:
 - Notification: Your call is being transferred to X.
 - Inform: A,B,C,D, and E are playing at the F theater.
 - Clarify: Did you say X or Y?
 - Needs cut-and-paste of pre-recorded segments or full TTS system

June 1999

Tutorial Overview: Outline

Part I

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

Part II

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

111

Dialogue Evaluation

- Goal: determine how "well" a dialogue system performs
- Main difficulties:
 - No strict right or wrong answers
 - Difficult to determine what features make a dialogue system better than another
 - Difficult to select metrics that contribute to the overall "goodness" of the system
 - Difficult to determine how the metrics compensate for one another

112

- Expensive to collect new data for evaluating incremental improvement of systems

June 1999

Dialogue Evaluation (Cont'd)

- System-initiative, explicit confirmation
 - better task success rate
 - lower WER
 - longer dialogues
 - fewer recovery subdialogues
 - less natural

- · Mixed-initiative, no confirmation
 - lower task success rate
 - higher WER
 - shorter dialogues
 - more recovery subdialogues
 - more natural

Dialogue Evaluation Paradigms

- Evaluating the end result only:
 - Reference answers
- Evaluating both the end result and the process toward it:
 - Evaluation metrics
 - Performance functions

June 1999

114

Evaluation Paradigms: Reference Answers

- Evaluates the task success rate only
- Suitable for query-answering systems for which a correct answer can be defined for each query
- · For each query:
 - Obtain answer from dialogue system
 - Compare with reference answer
 - Score system performance
- Advantage: simple
- Disadvantage: ignores many other important factors that contribute to quality of dialogue systems

115

Evaluation Paradigms: Evaluation Metrics

- Different metrics for evaluating different components of a dialogue system:
 - Speech recognizer: word error rate / word accuracy
 - Understanding component: attribute value matrix
 - Dialogue manager:
 - · appropriateness of system responses
 - · error recovery abilities
 - Overall system:
 - · task success
 - average number of turns
 - · elapsed time
 - · turn correction ratio

June 1999

Paradigms: Evaluation Metrics (Cont'd)

- Advantage:
 - Takes into account the process toward completing the task
- Limitations:
 - Difficult to determine how different metrics compensate for one another
 - Metrics may not be independent of one another
 - Does not generalize across domains and tasks

Paradigms: Performance Functions

- PARADISE [Walker et al.]: derives performance functions using both task-based and dialogue-based metrics
- User satisfaction:
 - Maximize task success
 - Minimize costs:
 - Efficiency measures: e.g., number of utterances, elapsed time
 - Qualitative measures: e.g., repair ratio, inappropriate utt. ratio
- Performance function derivation:
 - Obtain user satisfaction ratings (questionnaire)
 - Obtain values for various metrics (automatic or manual)
 - Apply multiple linear regression to derive a function relating user satisfaction and various cost factors, e.g.,

$$Perf = .21*TSR + .47*MR - .15*ET$$

June 1999

118

Paradigms: Performance Functions (Cont'd)

- Advantages:
 - Allows for comparison of dialogue systems performing different tasks
 - Specifies relative contributions of cost factors to overall performance
 - Can be used to make predictions about future versions of the dialogue system
- Disadvantages:
 - Data collection cost for deriving performance function is high
 - Cost for deriving performance function for multiple systems to draw general conclusions is high

June 1999

Tutorial Overview: Outline

Part I

Part II

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- · Dialogue evaluation
- Data collection

June 1999

Data Collection: Wizard of Oz Paradigm

- Setup for initial data collection:
 - User communicates with "system" through telephone (speech) or keyboard (text)

120

- "System" is actually a human, typically given instructions on how to behave like a system
- Users are typically given tasks to perform in the target domain
- Subjects are the users and the "system" can be played by one person
- Dialogues between "system" and user are recorded and transcribed
- Setup for intermediate system evaluation:
 - Use actual running system, with wizard supervision
 - Wizard can override undesirable system behavior, e.g., correct ASR errors

June 1999 121

Data Collection: Wizard of Oz (Cont'd)

- Features of collected data:
 - Typically much less complex than actual human-human dialogues performing the same tasks
 - Captures how humans behave when they talk to computers
 - Captures variations among different subjects in both language and approach when performing the same tasks
- Use of collected data:
 - Particularly useful for designing the interpretation component of the dialogue system
 - Useful for training purposes for ASR systems
 - May also be helpful for designing the dialogue management and response generation components

122

Publicly Available Telephone Demos

- Nuance http://www.nuance.com/demo/index.html
 - Banking: 1-650-847-7438
 - Travel Planning: 1-650-847-7427
 - Stock Quotes: 1-650-847-7427
- SpeechWorks http://www.speechworks.com/demos/demos.htm
 - Banking: 1-888-729-3366
 - Stock Trading: 1-800-786-2571
- MIT Spoken Language Systems Laboratory http://www.sls.lcs.mit.edu/sls/whatwedo/applications.html
 - Travel Plans (Pegasus): 1-877-648-8255
 - Weather (Jupiter): 1-888-573-8255
- IBM http://www.software.ibm.com/speech/overview/business/demo.html
 - Mutual Funds, Name Dialing: 1-877-VIA-VOICE

