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6SHHFK�DQG�$XGLR�3URFHVVLQJ

• Signal processing:
– Convert the audio wave into a sequence of feature vectors

• Speech recognition:
– Decode the sequence of feature vectors into a sequence of words

• Semantic interpretation:
– Determine the meaning of the recognized words

• Speech synthesis:
– Generate synthetic speech from a marked-up word string
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Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:
http://lethe.leeds.ac.uk/research/cogn/speech/tutorial/

“l” to “a”
transition:

$FRXVWLF�:DYHV

• Human speech generates a wave
– like a loudspeaker moving

• A wave for the words “speech lab” looks like:
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25 ms

10ms

. . .

a1      a2      a3

Result:
Acoustic Feature Vectors

$FRXVWLF�6DPSOLQJ

• 10 ms frame (ms = millisecond = 1/1000 second)
• ~25 ms window around frame to smooth signal processing
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• Frequency gives pitch; amplitude gives volume
– sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

• Fourier transform of wave yields a spectrogram
– darkness indicates energy at each frequency

– hundreds to thousands of frequency samples
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$FRXVWLF�)HDWXUHV��0HO�6FDOH�)LOWHUEDQN

• Derive Mel Scale Filterbank coefficients
• Mel scale:

– models non-linearity of human audio perception
– mel(f) = 2595 log10(1 + f / 700)

– roughly linear to 1000Hz and then logarithmic

• Filterbank
– collapses large number of FFT parameters by filtering with ~20

triangular filters spaced on mel scale

...
  m1 m2 m3   m4        m5                      m6  

frequency
…  coefficients
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&HSVWUDO�&RHIILFLHQWV

• Cepstral Transform is a discrete cosine transform of log
filterbank amplitudes:

• Result is ~12 Mel Frequency Cepstral Coefficients (MFCC)
• Almost independent (unlike mel filterbank)
• Use Delta (velocity / first derivative) and Delta2 (acceleration

/ second derivative) of MFCC (+ ~24 features)
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$GGLWLRQDO�6LJQDO�3URFHVVLQJ

• Pre-emphasis prior to Fourier transform to boost high level
energy

• Liftering to re-scale cepstral coefficients
• Channel Adaptation to deal with line and microphone

characteristics (example: cepstral mean normalization)
• Echo Cancellation to remove background noise (including

speech generated from the synthesizer)
• Adding a Total (log) Energy feature (+/- normalization)
• End-pointing to detect signal start and stop



6

June 1999 11

7XWRULDO�2YHUYLHZ��2XWOLQH

3DUW�,

• Signal processing
• Speech recognition

– acoustic modeling
– language modeling

– decoding

• Semantic interpretation
• Speech synthesis

3DUW�,,

• Discourse and dialogue
– Discourse interpretation

– Dialogue management

– Response generation

• Dialogue evaluation
• Data collection

June 1999 12

3URSHUWLHV�RI�5HFRJQL]HUV

• Speaker Independent vs. Speaker Dependent
• Large Vocabulary (2K-200K words) vs. Limited Vocabulary

(2-200)
• Continuous vs. Discrete
• Speech Recognition vs. Speech Verification
• Real Time vs. multiples of real time
• Spontaneous Speech vs. Read Speech
• Noisy Environment vs. Quiet Environment
• High Resolution Microphone vs. Telephone vs. Cellphone
• Adapt to speaker vs. non-adaptive
• Low vs. High Latency
• With online incremental results vs. final results
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7KH�6SHHFK�5HFRJQLWLRQ�3UREOHP

• Bayes’ Law
–  P(a,b) = P(a|b) P(b) = P(b|a) P(a)

– Joint probability of a and b = probability of b times the probability of a
given b

• The Recognition Problem
– Find most likely sequence w of “words” given the sequence of

acoustic observation vectors a
– Use Bayes’ law to create a generative model
– ArgMaxw  P(w|a) = ArgMaxw  P(a|w) P(w) / P(a)

                                 = ArgMaxw  P(a|w) P(w)

• Acoustic Model:      P(a|w)
• Language Model:    P(w)
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• HMMs provide generative acoustic models P(a|w)
• probabilistic, non-deterministic finite-state automaton

– state n  generates feature vectors with density Pn

– transitions from state j  to n  are probabilistic Pj,n

P3(.)P1(.) P2(.)

P1,1

P1,2

P2,2 P3,3

P2,3 P3,4

+LGGHQ�0DUNRY�0RGHOV��+00V�
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• Outgoing likelihoods:

• Feature vector a generated by normal density (Gaussian)
with mean η and covariance matrix Σ

+00V��6LQJOH�*DXVVLDQ�'LVWULEXWLRQ
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+00V��*DXVVLDQ�0L[WXUHV

• To account for variable pronunciations
• Each state generates acoustic vectors according to a linear

combination of m Gaussian models, weighted by λm:

),|N()(P ,,, mnmnm mnn Σ= ∑ ηλ aa

Three-component 
mixture model in
two dimensions
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P3(.)P1(.) P2(.)
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P2,3 P3,4

$FRXVWLF�0RGHOLQJ�ZLWK�+00V

• Train HMMs to represent subword units
• Units typically segmental; may vary in granularity

– phonological (~40 for English)
– phonetic (~60 for English)

– context-dependent triphones (~14,000 for English): models
temporal and spectral transitions between phones

– silence and noise are usually additional symbols

• Standard architecture is three successive states per
phone:
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3URQXQFLDWLRQ�0RGHOLQJ

• Needed for speech recognition and synthesis
• Maps orthographic representation of words to sequence(s)

of phones
• Dictionary doesn’t cover language due to:

– open classes

– names

– inflectional and derivational morphology

• Pronunciation variation can be modeled with multiple
pronunciation and/or acoustic mixtures

• If multiple pronunciations are given, estimate likelihoods
• Use rules (e.g. assimilation, devoicing, flapping), or

statistical transducers
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• Create compound HMM for each lexical entry by
concatenating the phones making up the pronunciation
– example of HMM for ‘lab’ (following ‘speech’ for crossword triphone)

• Multiple pronunciations can be weighted by likelihood into
compound HMM for a word

• (Tri)phone models are independent parts of word models

/H[LFDO�+00V
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 phone:               l                      a                       b
triphone:       ch-l+a                l-a+b               a-b+#
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+00�7UDLQLQJ��%DXP�:HOFK�5H�HVWLPDWLRQ

• Determines the probabilities for the acoustic HMM models
• Bootstraps from initial model

– hand aligned data, previous models or flat start

• Allows embedded training of whole utterances:
– transcribe utterance to words w1,…,wk and generate a compound

HMM by concatenating compound HMMs for words: m1,…,mk

– calculate acoustic vectors: a1,…,an

• Iteratively converges to a new estimate
• Re-estimates all paths because states are hidden
• Provides a maximum likelihood estimate

– model that assigns training data the highest likelihood
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• Assigns probability P(w) to word sequence w = w1 ,w2,…,wk

• Bayes’ Law provides a history-based model:
       P(w1 ,w2,…,wk)
       = P(w1) P(w2|w1) P(w3|w1,w2) 

… P(wk|w1,…,wk-1)
• Cluster histories to reduce number of parameters

3UREDELOLVWLF�/DQJXDJH�0RGHOLQJ��+LVWRU\
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1��JUDP�/DQJXDJH�0RGHOLQJ

• n-gram assumption clusters based on last n-1 words
–  P(wj|w1,…,wj-1) ~ P(wj|wj-n-1,…,wj-2 ,wj-1)

– unigrams ~ P(wj)
– bigrams ~   P(wj|wj-1)

– trigrams ~   P(wj|wj-2 ,wj-1)

• Trigrams often interpolated with bigram and unigram:

– the λi typically estimated by maximum likelihood estimation on held
out data (F(.|.) are relative frequencies)

– many other interpolations exist (another standard is a non-linear
backoff)
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([WHQGHG�3UREDELOLVWLF�/DQJXDJH�0RGHOLQJ

• Histories can include some indication of semantic topic
– latent-semantic indexing (vector-based information retrieval model)

– topic-spotting and blending of topic-specific models

– dialogue-state specific language models

• Language models can adapt over time
– recent history updates model through re-estimation or blending

– often done by boosting estimates for seen words (triggers)

– new words and/or pronunciations can be added

• Can estimate category tags (syntactic and/or semantic)
– Joint word/category model: P(word1:tag1,…,wordk:tagk)

– example: P(word:tag|History) ~ P(word|tag) P(tag|History)
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)LQLWH�6WDWH�/DQJXDJH�0RGHOLQJ

• Write a finite-state task grammar (with non-recursive CFG)

• Simple Java Speech API example (from user’s guide):

      public <Command> = [<Polite>] <Action> <Object> (and <Object>)*;

                <Action> = open | close | delete;
                <Object> = the window | the file;
                <Polite> = please;

• Typically assume that all transitions are equi-probable

• Technology used in most current applications

• Can put semantic actions in the grammar
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,QIRUPDWLRQ�7KHRU\��3HUSOH[LW\

• Perplexity is standard model of recognition complexity given
a language model

• Perplexity measures the conditional likelihood of a corpus,
given a language model  P(.):

• Roughly the number of equi-probable choices per word
• Typically computed by taking logs and applying history-

based Bayesian decomposition:

• But lower perplexity doesn’t guarantee better recognition

N
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=LSI·V�/DZ

• Lexical frequency is inversely proportional to rank
– Frequency(n) = Frequency of n-th most frequent word

– Zipf’s Law :  Frequency(Rank) = Frequency(1)/Rank

– Thus:            log Frequency(Rank) ∝ - log Rank

From G.R. Turner’s web site on Zipf’s law:
http://www.btinternet.com/~g.r.turner/ZipfDoc.htm
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9RFDEXODU\�$FTXLVLWLRQ

• IBM personal E-mail corpus of PDB (by R.L. Mercer)
• static coverage is given by most frequent n words
• dynamic coverage is most recent n words

Vocabulary Static
Coverage

Dynamic
Coverage

Text Size

5,000 92.5 95.5 56,000

10,000 95.9 98.2 240,000

15,000 97.0 99.0 640,000

20,000 97.6 99.5 1,300,000
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/DQJXDJH�+00V

• Can take HMMs for each word and combine into a single
HMM for the whole language (allows cross-word models)

• Result is usually too large to expand statically in memory
• A two word example is given by:

word1

word2

P(word2|word1)

P(word1|word2)

P(word1|word1)

P(word2|word2)

P(word1)

P(word2)
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• Decoding Problem is finding best word sequence:
– ArgMax w1,…,wm P(w1,…,wm | a1,…,an)

• Words w1…wm are fully determined by sequences of states
• Many state sequences produce the same words
• The Viterbi assumption:

–  the word sequence derived from the most likely path will be the most
likely word sequence (as would be computed over all paths)

+00�'HFRGLQJ

  
Acoustics
for state s
for input a

Max over
previous
states r

likelihood
previous 
state is r

Transition
probability
from r to s

sririsiii rsss ,111 P)(Max)(P),...,|,...,P(Max)( −== φφ aaa
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9LVXDOL]LQJ�9LWHUEL�'HFRGLQJ��7KH�7UHOOLV

ai-1

s1
φi-1(s1)

s2
φi-1(s2)

sk
φi-1(sk)

s1
φi(s1)

s2
φi(s2)

sk
φi(sk)

s1
φi+1(s1)

s2
φi+1(s2)

sk
φi+1(sk)

P1,1

P2,1

Pk,1

...

...

...

...

time ti-1 ti ti+1

ai+1ai

sririsiii rsss ,111 P)(Max)(P),...,|,...,P(Max)( −== φφ aaa
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P1,2

P1,kbest
path
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9LWHUEL�6HDUFK��'\QDPLF�3URJUDPPLQJ
7RNHQ�3DVVLQJ

• Algorithm:
– Initialize all states with a token with a null history and the likelihood

that it’s a start state

– For each frame ak

• For each token t in state s with probability P(t), history H

– For each state r

» Add new token to s with probability P(t) Ps,r Pr(ak), and
history s.H

• Time synchronous from left to right
• Allows incremental results to be evaluated
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3UXQLQJ�WKH�6HDUFK�6SDFH

• Entire search space for Viterbi search is much too large
• Solution is to prune tokens for paths whose score is too low
• Typical method is to use:

– histogram: only keep at most n total hypotheses

– beam: only keep hypotheses whose score is a fraction of best score

• Need to balance small n and tight beam to limit search and
minimal search error (good hypotheses falling off beam)

• HMM densities are usually scaled differently than the
discrete likelihoods from the language model
– typical solution: boost language model’s dynamic range, using P(w)n

P(a|w), usually with with n ~ 15

• Often include penalty for each word to favor hypotheses
with fewer words
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1�EHVW�+\SRWKHVHV�DQG�:RUG�*UDSKV

• Keep multiple tokens and return n-best paths/scores:
– p1  flights from Boston today

– p2  flights from Austin today
– p3  flights for Boston to pay

– p4  lights for Boston to pay

• Can produce a packed word graph (a.k.a. lattice)
– likelihoods of paths in lattice should equal likelihood for n-best

flights

lights

from

for

for

Boston

Boston

Austin

today

to
pay
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6HDUFK�EDVHG�'HFRGLQJ

• A* search:
– Compute all initial hypotheses and place in priority queue

– For best hypothesis in queue
• extend by one observation, compute next state score(s) and

place into the queue

• Scoring now compares derivations of different lengths
– would like to, but can’t compute cost to complete until all data is seen

– instead, estimate with simple normalization for length

– usually prune with beam and/or histogram constraints

• Easy to include unbounded amounts of history because no
collapsing of histories as in dynamic programming n-gram

• Also known as stack decoder (priority queue is “stack”)
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0XOWLSOH�3DVV�'HFRGLQJ

• Perform multiple passes, applying successively more fine-
grained language models

• Can much more easily go beyond finite state or n-gram
• Can use for Viterbi or stack decoding
• Can use word graph as an efficient interface
• Can compute likelihood to complete hypotheses after each

pass and use in next round to tighten beam search
• First pass can even be a free phone decoder without a

word-based language model
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0HDVXULQJ�5HFRJQLWLRQ�$FFXUDF\

• Word Error Rate =

• Example scoring:
– actual utterance:  four             six seven nine     three three     seven

– recognizer:           four  oh       six seven five      three               seven

                                          insert                  subst            delete

– WER:   (1 + 1 + 1)/7 = 43%

• Would like to study concept accuracy
– typically count only errors on content words [application dependent]

– ignore case marking (singular, plural, etc.)

• For word/concept spotting applications:
– recall: percentage of target words (concept) found
– precision: percentage of hypothesized words (concepts) in target

Words

onsSubstitutiDeletionsInsertions ++
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(PSLULFDO�5HFRJQLWLRQ�$FFXUDFLHV

• Cambridge HTK, 1997; multipass HMM w. lattice rescoring
• Top Performer in ARPA’s HUB-4: Broadcast News Task
• 65,000 word vocabulary; Out of Vocabulary: 0.5%
• Perplexities:

– word bigram: 240                                             (6.9 million bigrams)

– backoff trigram of 1000 categories: 238          (803K bi, 7.1G tri)

– word trigram: 159                                             (8.4 million trigrams)
– word 4-gram: 147                                             (8.6 million 4-grams)

– word 4-gram + category trigram: 137

• Word Error Rates:
– clean, read speech: 9.4%

– clean, spontaneous speech: 15.2%
– low fidelity speech: 19.5%



21

June 1999 41

(PSLULFDO�5HFRJQLWLRQ�$FFXUDFLHV��FRQW·G�

• Lucent 1998, single pass HMM
• Typical of real-time telephony performance (low fidelity)
• 3,000 word vocabulary; Out of Vocabulary: 1.5%
• Blended models from customer/operator & customer/system
• Perplexities     customer/op     customer/system

– bigram:           105.8 (27,200)       32.1 (12,808)

– trigram:             99.5 (68,500)       24.4 (25,700)

• Word Error Rate: 23%
• Content Term (single, pair, triple of words) Precision/Recall

– one-word terms:      93.7  /  88.4

– two-word terms:      96.9 /  85.4
– three-word terms:    98.5 /  84.3
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&RQILGHQFH�6FRULQJ�DQG�5HMHFWLRQ

• Alternative to standard acoustic density scoring
– compute HMM acoustic score for word(s) in usual way

– baseline score for an anti-model
– compute hypothesis ratio  (Word Score / Baseline Score)

– test hypothesis ratio vs. threshold

• Can be applied to:
– free word spotting (given pronunciations)
– (word-by-word) acoustic confidence scoring for later processing

– verbal information verification

• existing info: name, address, social security number

• password
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7XWRULDO�2YHUYLHZ��2XWOLQH
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6HPDQWLF�,QWHUSUHWDWLRQ��:RUG�6WULQJV

• Content is just words
– System:  What is your address?

– User:      fourteen eleven main street

• Can also do concept extraction / keyword(s) spotting
– User:      My address is fourteen eleven main street

• Applications
– template filling

– directory services

– information retrieval
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6HPDQWLF�,QWHUSUHWDWLRQ��3DWWHUQ�%DVHG

• Simple (typically regular) patterns specify content
• ATIS (Air Traffic Information System) Task:

– System:  What are your travel plans?
– User:      [On Monday], I’m going [from Boston] [to San Francisco].

– Content: [DATE=Monday,  ORIGIN=Boston, DESTINATION=SFO]

• Can combine content-extraction and language modeling
– but can be too restrictive as a language model

• Java Speech API:  (curly brackets show semantic ‘actions’)
         public <command> = <action> [<object>] [<polite>];

                   <action> = open {OP} | close {CL} | move {MV};
                   <object> = [<this_that_etc>] window | door;
                   <this_that_etc> = a | the | this | that | the current;

                   <polite> = please | kindly;

• Can be generated and updated on the fly (eg. Web Apps)
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6HPDQWLF�,QWHUSUHWDWLRQ��3DUVLQJ

• In general case, have to uncover who did what to whom:
– System: What would you like me to do next?

– User: Put the block in the box on Platform 1.  [ambiguous]
– System: How can I help you?

– User: Where is A Bug’s Life playing in Summit?

• Requires some kind of parsing to produce relations:
– Who did what to whom:

?(where(present(in(Summit,play(BugsLife)))))

– This kind of representation often used for machine translation

• Often transferred to flatter frame-based representation:
– Utterance type: where-question

– Movie: A Bug’s Life

– Town: Summit
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5REXVWQHVV�DQG�3DUWLDOLW\

• Controlled Speech
– limited task vocabulary; limited task grammar

• Spontaneous Speech
– Can have high out-of-vocabulary (OOV) rate

– Includes restarts, word fragments, omissions, phrase fragments,
disagreements, and other disfluencies

– Contains much grammatical variation

– Causes high word error-rate in recognizer

• Parsing is often partial, allowing:
– omission

– parsing fragments

June 1999 48

7XWRULDO�2YHUYLHZ��2XWOLQH
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5HFRUGHG�3URPSWV

• The simplest (and most common) solution is to record
prompts spoken by a (trained) human

• Produces human quality voice
• Limited by number of prompts that can be recorded
• Can be extended by limited cut-and-paste or template filling
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6SHHFK�6\QWKHVLV

• Rule-based Synthesis
– Uses linguistic rules (+/- training) to generate features

– Example: DECTalk

• Concatenative Synthesis
– Record basic inventory of sounds

– Retrieve appropriate sequence of units at run time

– Concatenate and adjust durations and pitch
– Waveform synthesis
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'LSKRQH�DQG�3RO\SKRQH�6\QWKHVLV

• Phone sequences capture co-articulation
• Cut speech in positions that minimize context contamination
• Need single phones, diphones and sometimes triphones
• Reduce number collected by

– phonotactic constraints

– collapsing in cases of no co-articulation

• Data Collection Methods
– Collect data from a single (professional) speaker

– Select text with maximal coverage (typically with greedy algorithm),
or

– Record minimal pairs in desired contexts (real words or nonsense)
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'XUDWLRQ�0RGHOLQJ

Must generate segments with the appropriate duration
• Segmental Identity

– /ai/ in like twice as long as /I/ in lick

• Surrounding Segments
– vowels longer following voiced fricatives than voiceless stops

• Syllable Stress
– onsets and nuclei of stressed syllables longer than in unstressed

• Word “importance”
– word accent with major pitch movement lengthens

• Location of Syllable in Word
– word ending longer than word starting longer than word internal

• Location of the Syllable in the Phrase
– phrase final syllables longer than same syllable in other positions
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,QWRQDWLRQ��7RQH�6HTXHQFH�0RGHOV

• Functional Information can be encoded via tones:
– given/new information (information status)

– contrastive stress
– phrasal boundaries (clause structure)

– dialogue act (statement/question/command)

• Tone Sequence Models
– F0 contours generated from phonologically distinctive tones/pitch

accents which are locally independent
– generate a sequence of tonal targets and fit with signal processing
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,QWRQDWLRQ�IRU�)XQFWLRQ

• ToBI (Tone and Break Index) System, is one example:
– Pitch Accent       *   (H*, L*, H*+L, H+L*, L*+H, L+H*)

– Phrase Accent    -   (H-, L-)
– Boundary Tone  %  (H%, L%)

– Intonational Phrase
                         <Pitch Accent>+ <Phrase Accent> <Boundary Tone>

source: Multilingual Text-to-Speech Synthesis, R. Sproat, ed., Kluwer, 1998
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• Bell Labs TTS Markup
– r(0.9) L*+H(0.8) Humpty  L*+H(0.8)  Dumpty r(0.85) L*(0.5) sat on a

H*(1.2) wall.

– Tones:              Tone(Prominence)
– Speaking Rate: r(Rate) and pauses

– Top Line (highest pitch); Reference Line (reference pitch); Base
Line (lowest pitch)

• SABLE is an emerging standard extending SGML
http://www.cstr.ed.ac.uk/projects/sable.html
– marks:  emphasis(#), break(#), pitch(base/mid/range,#), rate(#),

volume(#), semanticMode(date/time/email/URL/...),
speaker(age,sex)

– Implemented in Festival Synthesizer (free for research, etc.):

                   http://www.cstr.ed.ac.uk/projects/festival.html
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• Generate a sequence of F0 targets for synthesis
• Example:

– We were away a year ago.
– phones: w E w R & w A & y E r & g O

– Default Declarative intonation: (H%) H* L- L%  [question: L* H- H%]

source: Multilingual Text-to-Speech Synthesis, R. Sproat, ed., Kluwer, 1998
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• Diphones recorded in one context must be generated in
other contexts

• Features are extracted from recorded units
• Signal processing manipulates features to smooth

boundaries where units are concatenated
• Signal processing modifies signal via ‘interpolation’

– intonation
– duration
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• Model of features to be extracted and fitted
• Excitation or Voicing Source(s) to model sound source

– standard wave of glottal pulses for voiced sounds
– randomly varying noise for unvoiced sounds

– modification of airflow due to lips, etc.

– high frequency (F0 rate), quasi-periodic, choppy

– modeled with vector of glottal waveform patterns in voiced regions

• Acoustic Filter(s)
– shapes the frequency character of vocal tract and radiation character

at the lips

– relatively slow (samples around 5ms suffice) and stationary

– modeled with LPC (linear predictive coding)
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• Technique to allow speaker to interrupt the system’s speech
• Combined processing of input signal and output signal
• Signal detector runs looking for speech start and endpoints

– tests a generic speech model against noise model

– typically cancels echoes created by outgoing speech

• If speech is detected:
– Any synthesized or recorded speech is cancelled
– Recognition begins and continues until end point is detected
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• Abstract  from recognition/synthesis engines
• Recognizer and synthesizer loading
• Acoustic and grammar model loading (dynamic updates)
• Recognition

– online

– n-best or lattice

• Synthesis
– markup

– barge in

• Acoustic control
– telephony interface

– microphone/speaker interface
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• SAPI: Microsoft Speech API (rec&synth)
– communicates through COM objects

– instances: most systems implement all or some of this (Dragon, IBM,
Lucent, L&H, etc.)

• JSAPI: Java Speech API (rec & synth)
– communicates through Java events (like GUI)

– concurrency through threads

– instances: IBM ViaVoice (rec), L&H (synth)

• (J)HAPI: (Java) HTK API (recognition)
– communicates through C or Java port of C interface

– eg: Entropics Cambridge Research Lab’s HMM Tool Kit (HTK)

• Galaxy (rec & synth)
– communicates through a production system scripting language
– MIT System, ported by MITRE for DARPA Communicator


