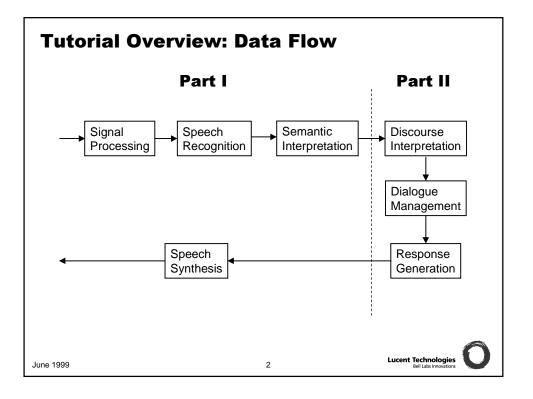
Spoken Dialogue Systems

Bob Carpenter and Jennifer Chu-Carroll

June 20, 1999



Speech and Audio Processing

- Signal processing:
 - Convert the audio wave into a sequence of feature vectors
- Speech recognition:
 - Decode the sequence of feature vectors into a sequence of words
- Semantic interpretation:
 - Determine the meaning of the recognized words
- Speech synthesis:
 - Generate synthetic speech from a marked-up word string

June 1999

3

Tutorial Overview: Outline

Part I

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

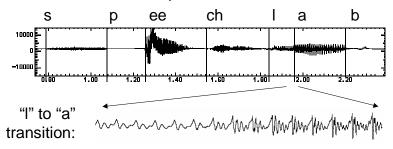
Part II

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

June 1999

Acoustic Waves

- Human speech generates a wave
 - like a loudspeaker moving
- A wave for the words "speech lab" looks like:



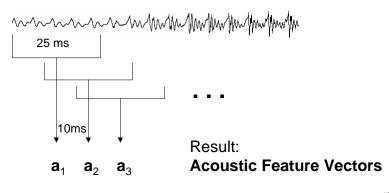
Graphs from Simon Arnfield's web tutorial on speech, Sheffield: http://lethe.leeds.ac.uk/research/cogn/speech/tutorial/

June 1999

5

Acoustic Sampling

- 10 ms frame (ms = millisecond = 1/1000 second)
- ~25 ms window around frame to smooth signal processing

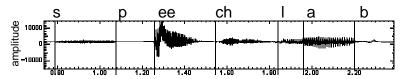


June 1999

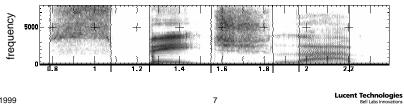
6

Spectral Analysis

- Frequency gives pitch; amplitude gives volume
 - sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)



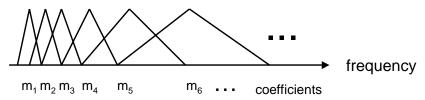
- Fourier transform of wave yields a spectrogram
 - darkness indicates energy at each frequency
 - hundreds to thousands of frequency samples



June 1999

Acoustic Features: Mel Scale Filterbank

- Derive Mel Scale Filterbank coefficients
- Mel scale:
 - models non-linearity of human audio perception
 - $\text{ mel(f)} = 2595 \log_{10}(1 + f / 700)$
 - roughly linear to 1000Hz and then logarithmic
- Filterbank
 - collapses large number of FFT parameters by filtering with ~20 triangular filters spaced on mel scale



8

June 1999

Cepstral Coefficients

 Cepstral Transform is a discrete cosine transform of log filterbank amplitudes:

$$c_i = (2/N)^{1/2} \sum_{j=1}^{N} \log m_j \cos \left(\frac{\pi i}{N} (j - 0.5) \right)$$

- Result is ~12 Mel Frequency Cepstral Coefficients (MFCC)
- Almost independent (unlike mel filterbank)
- Use Delta (velocity / first derivative) and Delta² (acceleration / second derivative) of MFCC (+ ~24 features)

June 1999

9

Additional Signal Processing

- Pre-emphasis prior to Fourier transform to boost high level energy
- Liftering to re-scale cepstral coefficients
- Channel Adaptation to deal with line and microphone characteristics (example: cepstral mean normalization)
- Echo Cancellation to remove background noise (including speech generated from the synthesizer)
- Adding a **Total (log) Energy** feature (+/- normalization)
- End-pointing to detect signal start and stop

June 1999

10

Lucent Technologies

Tutorial Overview: Outline

Part I

Signal processing

- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

Part II

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

June 1999

Properties of Recognizers

- Speaker Independent vs. Speaker Dependent
- Large Vocabulary (2K-200K words) vs. Limited Vocabulary (2-200)
- Continuous vs. Discrete
- Speech Recognition vs. Speech Verification
- Real Time vs. multiples of real time
- Spontaneous Speech vs. Read Speech
- Noisy Environment vs. Quiet Environment
- High Resolution Microphone vs. Telephone vs. Cellphone

12

- · Adapt to speaker vs. non-adaptive
- Low vs. High Latency
- · With online incremental results vs. final results

June 1999

The Speech Recognition Problem

- Bayes' Law
 - P(a,b) = P(a|b) P(b) = P(b|a) P(a)
 - Joint probability of a and b = probability of b times the probability of a given b
- The Recognition Problem
 - Find most likely sequence w of "words" given the sequence of acoustic observation vectors a
 - Use Bayes' law to create a generative model
 - $ArgMax_{\mathbf{W}} P(\mathbf{w}|\mathbf{a}) = ArgMax_{\mathbf{W}} P(\mathbf{a}|\mathbf{w}) P(\mathbf{w}) / P(\mathbf{a})$ = $ArgMax_{\mathbf{W}} P(\mathbf{a}|\mathbf{w}) P(\mathbf{w})$

Acoustic Model: P(a|w)
 Language Model: P(w)

June 1999

Tutorial Overview: Outline

Part I

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

Part II

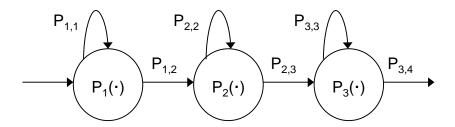
14

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

June 1999

Hidden Markov Models (HMMs)

- HMMs provide generative acoustic models P(a|w)
- probabilistic, non-deterministic finite-state automaton
 - state n generates feature vectors with density P_n
 - transitions from state j to n are probabilistic P_{in}



June 1999

15

Lucent Technologies
Bell Labs Innovations

HMMs: Single Gaussian Distribution

$$P_{1,1}$$
 $P_{2,2}$ $P_{3,3}$ $P_{3,4}$ $P_{3,4}$ $P_{3,4}$

- Outgoing likelihoods: $\sum_{n} P_{i,n} = 1$
- Feature vector ${\bf a}$ generated by normal density (Gaussian) with mean η and covariance matrix Σ

$$P_n(\mathbf{a}) = \mathbf{N}(\mathbf{a} \mid \boldsymbol{\eta}_n, \boldsymbol{\Sigma}_n)$$

$$= (2\pi)^{-d/2} |\boldsymbol{\Sigma}_n|^{-1/2} \exp(-\frac{1}{2}(\mathbf{a} - \boldsymbol{\eta}_n)^T \boldsymbol{\Sigma}_n^{-1}(\mathbf{a} - \boldsymbol{\eta}_n))$$

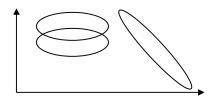
June 1999

16

HMMs: Gaussian Mixtures

- To account for variable pronunciations
- Each state generates acoustic vectors according to a **linear** combination of m Gaussian models, weighted by λ_m :

$$P_n(\mathbf{a}) = \sum_{m} \lambda_{n,m} N(\mathbf{a} \mid \boldsymbol{\eta}_{n,m}, \boldsymbol{\Sigma}_{n,m})$$



Three-component mixture model in two dimensions

June 1999

17

Acoustic Modeling with HMMs

- Train HMMs to represent subword units
- Units typically segmental; may vary in granularity
 - phonological (~40 for English)
 - phonetic (~60 for English)
 - context-dependent triphones (~14,000 for English): models temporal and spectral transitions between phones
 - silence and noise are usually additional symbols
- Standard architecture is three successive states per phone:

June 1999

18

Pronunciation Modeling

- Needed for speech recognition and synthesis
- Maps orthographic representation of words to sequence(s) of phones
- Dictionary doesn't cover language due to:
 - open classes
 - names
 - inflectional and derivational morphology
- Pronunciation variation can be modeled with multiple pronunciation and/or acoustic mixtures
- If multiple pronunciations are given, estimate likelihoods
- Use rules (e.g. assimilation, devoicing, flapping), or statistical transducers

June 1999

19

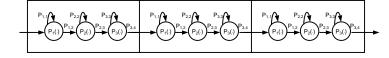
Lucent Technologies
Bell Labs Innovations

Lexical HMMs

- Create compound HMM for each lexical entry by concatenating the phones making up the pronunciation
 - example of HMM for 'lab' (following 'speech' for crossword triphone)

triphone: che phone:

I-**a**+b a a-**b**+# b



- Multiple pronunciations can be weighted by likelihood into compound HMM for a word
- (Tri)phone models are independent parts of word models

June 1999

20

HMM Training: Baum-Welch Re-estimation

- Determines the probabilities for the acoustic HMM models
- Bootstraps from initial model
 - hand aligned data, previous models or flat start
- Allows embedded training of whole utterances:
 - transcribe utterance to words $\mathbf{W}_1, \dots, \mathbf{W}_k$ and generate a compound HMM by concatenating compound HMMs for words: $\mathbf{m}_1, \dots, \mathbf{m}_k$
 - calculate acoustic vectors: **a**₁,...,**a**_n
- Iteratively converges to a new estimate
- Re-estimates all paths because states are hidden
- Provides a maximum likelihood estimate
 - model that assigns training data the highest likelihood

June 1999

Tutorial Overview: Outline

Part I

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

Part II

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

June 1999 22

Probabilistic Language Modeling: History

- Assigns probability P(w) to word sequence w = w₁, w₂,...,w_k
- Bayes' Law provides a history-based model:

$$P(w_1, w_2, ..., w_k)$$

$$= P(w_1) P(w_2|w_1) P(w_3|w_1,w_2) \cdots P(w_k|w_1,...,w_{k-1})$$

• Cluster histories to reduce number of parameters

June 1999

23

N-gram Language Modeling

n-gram assumption clusters based on last n-1 words

-
$$P(w_j|w_1,...,w_{j-1}) \sim P(w_j|w_{j-n-1},...,w_{j-2},w_{j-1})$$

- unigrams ~ P(w_i)
- bigrams $\sim P(w_i|w_{i-1})$
- trigrams ~ $P(w_i|w_{i-2}, w_{i-1})$
- Trigrams often interpolated with bigram and unigram:

$$\hat{P}(w_3 \mid w_1, w_2) = \lambda_3 \frac{F(w_3 \mid w_1, w_2)}{\sum_k F(w_k \mid w_1, w_2)} + \lambda_2 \frac{F(w_3 \mid w_2)}{\sum_k F(w_k \mid w_2)} + \lambda_1 \frac{F(w_3)}{\sum_k F(w_k)}$$

- the λ_i typically estimated by maximum likelihood estimation on held out data (F(.|.)) are relative frequencies)
- many other interpolations exist (another standard is a non-linear backoff)

June 1999

24

Extended Probabilistic Language Modeling

- Histories can include some indication of semantic topic
 - latent-semantic indexing (vector-based information retrieval model)
 - topic-spotting and blending of topic-specific models
 - dialogue-state specific language models
- Language models can adapt over time
 - recent history updates model through re-estimation or blending
 - often done by boosting estimates for seen words (triggers)
 - new words and/or pronunciations can be added
- Can estimate category tags (syntactic and/or semantic)
 - Joint word/category model: P(word₁:tag₁,...,word_k:tag_k)
 - example: P(word:tag|History) ~ P(word|tag) P(tag|History)

June 1999

25

Lucent Technologies

Bell Labs Innovations

Finite State Language Modeling

- Write a finite-state task grammar (with non-recursive CFG)
- Simple Java Speech API example (from user's guide):

- Typically assume that all transitions are equi-probable
- Technology used in most current applications
- Can put semantic actions in the grammar

June 1999 26

Information Theory: Perplexity

- Perplexity is standard model of recognition complexity given a language model
- Perplexity measures the conditional likelihood of a corpus, given a language model P(.):

$$PP(w_1,...,w_N) = P(w_1,...,w_N)^{-1/N}$$

- · Roughly the number of equi-probable choices per word
- Typically computed by taking logs and applying historybased Bayesian decomposition:

$$\log_2 PP = -1/N \sum_{n=1}^{N} \log_2 P(w_n \mid w_1, ..., w_{n-1})$$

• But lower perplexity doesn't guarantee better recognition

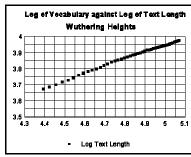
June 1999

27

Lucent Technologies
Bell Labs Innovations

Zipf's Law

- Lexical frequency is inversely proportional to rank
 - Frequency(n) = Frequency of n-th most frequent word
 - **Zipf's Law**: Frequency(Rank) = Frequency(1)/Rank
 - Thus: log Frequency(Rank) ∞ log Rank



From G.R. Turner's web site on Zipf's law: http://www.btinternet.com/~g.r.turner/ZipfDoc.htm

June 1999

28

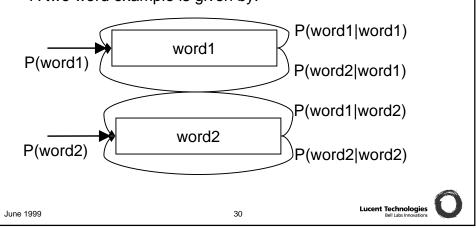
Vocabulary Acquisition

- IBM personal E-mail corpus of PDB (by R.L. Mercer)
- static coverage is given by most frequent n words
- dynamic coverage is most recent *n* words

	Vocabulary	Static Coverage	Dynamic Coverage	Text Size
	5,000	92.5	95.5	56,000
	10,000	95.9	98.2	240,000
	15,000	97.0	99.0	640,000
	20,000	97.6	99.5	1,300,000
June 1999		29		Lucent Technologies Bell Labs Innovations

Language HMMs

- Can take HMMs for each word and combine into a single HMM for the whole language (allows **cross-word** models)
- Result is usually too large to expand statically in memory
- A two word example is given by:



Tutorial Overview: Outline

Part I

- · Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- · Speech synthesis

Part II

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

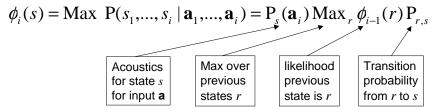
June 1999

Lucent Technologies

Bell Labs Innovations

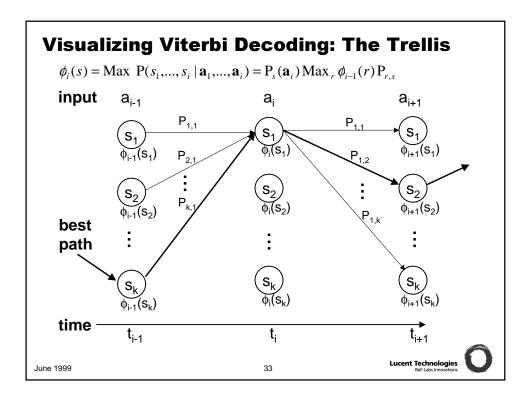
HMM Decoding

- Decoding Problem is finding best word sequence:
 - ArgMax $w_1, \dots, w_m P(w_1, \dots, w_m | a_1, \dots, a_n)$
- \bullet Words $w_1...w_{\mbox{\scriptsize m}}$ are fully determined by sequences of states
- Many state sequences produce the same words
- The Viterbi assumption:
 - the word sequence derived from the most likely path will be the most likely word sequence (as would be computed over all paths)



June 1999

32



Viterbi Search: Dynamic Programming Token Passing

- Algorithm:
 - Initialize all states with a token with a null history and the likelihood that it's a start state
 - For each frame a_k
 - For each token t in state s with probability P(t), history H
 - For each state r
 - » Add new token to s with probability $P(t) P_{s,r} P_r(a_k)$, and history s.H
- Time synchronous from left to right
- · Allows incremental results to be evaluated

June 1999 34

Pruning the Search Space

- Entire search space for Viterbi search is much too large
- Solution is to prune tokens for paths whose score is too low
- Typical method is to use:
 - histogram: only keep at most n total hypotheses
 - beam: only keep hypotheses whose score is a fraction of best score
- Need to balance small n and tight beam to limit search and minimal search error (good hypotheses falling off beam)
- HMM densities are usually scaled differently than the discrete likelihoods from the language model
 - typical solution: boost language model's dynamic range, using $P(\mathbf{w})^n$ $P(\mathbf{a}|\mathbf{w})$, usually with with $n \sim 15$
- Often include penalty for each word to favor hypotheses with fewer words

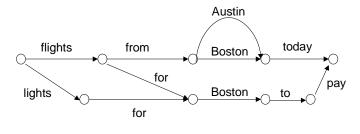
June 1999

35

Lucent Technologies
Bell Labs Innovations

N-best Hypotheses and Word Graphs

- Keep multiple tokens and return n-best paths/scores:
 - p1 flights from Boston today
 - p2 flights from Austin today
 - p3 flights for Boston to pay
 - p4 lights for Boston to pay
- Can produce a packed word graph (a.k.a. lattice)
 - likelihoods of paths in lattice should equal likelihood for n-best



36

June 1999

Search-based Decoding

- A* search:
 - Compute all initial hypotheses and place in priority queue
 - For best hypothesis in queue
 - extend by one observation, compute next state score(s) and place into the queue
- Scoring now compares derivations of different lengths
 - would like to, but can't compute cost to complete until all data is seen
 - instead, estimate with simple normalization for length
 - usually prune with beam and/or histogram constraints
- Easy to include unbounded amounts of **history** because no collapsing of histories as in dynamic programming n-gram
- Also known as **stack decoder** (priority queue is "stack")

June 1999

37

Multiple Pass Decoding

- Perform multiple passes, applying successively more finegrained language models
- Can much more easily go beyond finite state or n-gram
- Can use for Viterbi or stack decoding
- Can use word graph as an efficient interface
- Can compute likelihood to complete hypotheses after each pass and use in next round to tighten beam search
- First pass can even be a free phone decoder without a word-based language model

June 1999

38

Measuring Recognition Accuracy

- *Insertions* + *Deletions* + *Substitutions* Word Error Rate = Words
- Example scoring:
 - actual utterance: four six seven nine three three seven – recognizer: four oh six seven five three seven insert subst delete
 - WER: (1 + 1 + 1)/7 = 43%
- Would like to study concept accuracy
 - typically count only errors on content words [application dependent]
 - ignore case marking (singular, plural, etc.)
- For word/concept spotting applications:
 - recall: percentage of target words (concept) found
 - precision: percentage of hypothesized words (concepts) in target

June 1999

Lucent Technologies
Bell Labs Innovations

Empirical Recognition Accuracies

- Cambridge HTK, 1997; multipass HMM w. lattice rescoring
- **Top Performer** in ARPA's HUB-4: Broadcast News Task
- 65,000 word vocabulary; Out of Vocabulary: 0.5%
- Perplexities:
 - word bigram: 240 (6.9 million bigrams) - backoff trigram of 1000 categories: 238 (803K bi, 7.1G tri) - word trigram: 159 (8.4 million trigrams) word 4-gram: 147
 - word 4-gram + category trigram: 137
- Word Error Rates:
 - clean, read speech: 9.4%
 - clean, spontaneous speech: 15.2%
 - low fidelity speech: 19.5%

June 1999 40 Lucent Technologies

(8.6 million 4-grams)

Empirical Recognition Accuracies (cont'd)

- Lucent 1998, single pass HMM
- Typical of real-time telephony performance (low fidelity)
- 3,000 word vocabulary; Out of Vocabulary: 1.5%
- Blended models from customer/operator & customer/system
- Perplexities customer/op customer/system
 - bigram: 105.8 (27,200) 32.1 (12,808) - trigram: 99.5 (68,500) 24.4 (25,700)
- Word Error Rate: 23%
- Content Term (single, pair, triple of words) Precision/Recall

one-word terms: 93.7 / 88.4two-word terms: 96.9 / 85.4three-word terms: 98.5 / 84.3

June 1999

Confidence Scoring and Rejection

- Alternative to standard acoustic density scoring
 - compute HMM acoustic score for word(s) in usual way
 - baseline score for an anti-model
 - compute hypothesis ratio (Word Score / Baseline Score)
 - test hypothesis ratio vs. threshold
- Can be applied to:
 - free word spotting (given pronunciations)
 - (word-by-word) acoustic confidence scoring for later processing
 - verbal information verification
 - existing info: name, address, social security number
 - · password

June 1999 42

Lucent Technologies

Tutorial Overview: Outline

Part I

Part II

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

June 1999

43

Semantic Interpretation: Word Strings

- Content is just words
 - System: What is your address?
 - User: fourteen eleven main street
- Can also do concept extraction / keyword(s) spotting
 - User: My address is fourteen eleven main street
- Applications
 - template filling
 - directory services
 - information retrieval

June 1999

44

Semantic Interpretation: Pattern-Based

- Simple (typically regular) patterns specify content
- ATIS (Air Traffic Information System) Task:
 - System: What are your travel plans?
 - User: [On Monday], I'm going [from Boston] [to San Francisco].
 - Content: [DATE=Monday, ORIGIN=Boston, DESTINATION=SFO]
- Can combine content-extraction and language modeling
 - but can be too restrictive as a language model
- Java Speech API: (curly brackets show semantic 'actions')

```
public <command> = <action> [<object>] [<polite>];
    <action> = open {OP} | close {CL} | move {MV};
    <object> = [<this_that_etc>] window | door;
    <this_that_etc> = a | the | this | that | the current;
    <polite> = please | kindly;
```

Can be generated and updated on the fly (eg. Web Apps)

Semantic Interpretation: Parsing

- In general case, have to uncover who did what to whom:
 - System: What would you like me to do next?
 - User: Put the block in the box on Platform 1. [ambiguous]
 - System: How can I help you?
 - User: Where is A Bug's Life playing in Summit?
- Requires some kind of parsing to produce relations:
 - Who did what to whom: ?(where(present(in(Summit,play(BugsLife)))))
 - This kind of representation often used for machine translation
- Often transferred to flatter frame-based representation:
 - Utterance type: where-question
 - Movie: A Bug's Life

- Town: Summit

Lucent Technologies
Bell Labs Innovations

June 1999 46

Robustness and Partiality

- Controlled Speech
 - limited task vocabulary; limited task grammar
- Spontaneous Speech
 - Can have high out-of-vocabulary (OOV) rate
 - Includes restarts, word fragments, omissions, phrase fragments, disagreements, and other disfluencies
 - Contains much grammatical variation
 - Causes high word error-rate in recognizer
- Parsing is often partial, allowing:
 - omission
 - parsing fragments

June 1999

47

Tutorial Overview: Outline

Part I

- Signal processing
- Speech recognition
 - acoustic modeling
 - language modeling
 - decoding
- Semantic interpretation
- Speech synthesis

Part II

- Discourse and dialogue
 - Discourse interpretation
 - Dialogue management
 - Response generation
- Dialogue evaluation
- Data collection

June 1999

48

Recorded Prompts

- The simplest (and most common) solution is to record prompts spoken by a (trained) human
- Produces human quality voice
- · Limited by number of prompts that can be recorded
- · Can be extended by limited cut-and-paste or template filling

June 1999

49

- Rule-based Synthesis
 - Uses linguistic rules (+/- training) to generate features
 - Example: DECTalk
- Concatenative Synthesis
 - Record basic inventory of sounds
 - Retrieve appropriate sequence of units at run time
 - Concatenate and adjust durations and pitch
 - Waveform synthesis

June 1999

50

Diphone and Polyphone Synthesis

- Phone sequences capture co-articulation
- Cut speech in positions that minimize context contamination
- Need single phones, diphones and sometimes triphones
- Reduce number collected by
 - phonotactic constraints
 - collapsing in cases of no co-articulation
- Data Collection Methods
 - Collect data from a single (professional) speaker
 - Select text with maximal coverage (typically with greedy algorithm), or
 - Record minimal pairs in desired contexts (real words or nonsense)

June 1999

51

Duration Modeling

Must generate segments with the appropriate duration

- Segmental Identity
 - /ai/ in like twice as long as /l/ in lick
- Surrounding Segments
 - vowels longer following voiced fricatives than voiceless stops
- Syllable Stress
 - onsets and nuclei of stressed syllables longer than in unstressed
- Word "importance"
 - word accent with major pitch movement lengthens
- Location of Syllable in Word
 - word ending longer than word starting longer than word internal
- Location of the Syllable in the Phrase
 - phrase final syllables longer than same syllable in other positions

June 1999

Lucent Technologies

Intonation: Tone Sequence Models

- Functional Information can be encoded via tones:
 - given/new information (information status)
 - contrastive stress
 - phrasal boundaries (clause structure)
 - dialogue act (statement/question/command)
- **Tone Sequence Models**
 - F0 contours generated from phonologically distinctive tones/pitch accents which are locally independent
 - generate a sequence of tonal targets and fit with signal processing

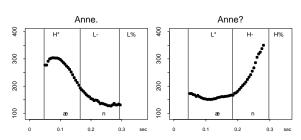
June 1999

Intonation for Function

- ToBI (Tone and Break Index) System, is one example:
 - Pitch Accent * (H*, L*, H*+L, H+L*, L*+H, L+H*)
 - Phrase Accent (H-, L-)
 - Boundary Tone % (H%, L%)
 - Intonational Phrase

<Pitch Accent> + <Phrase Accent> <Boundary Tone>

statement vs. question example:



source: Multilingual Text-to-Speech Synthesis, R. Sproat, ed., Kluwer, 1998

54

June 1999

Lucent Technologies

Text Markup for Synthesis

- Bell Labs TTS Markup
 - r(0.9) L*+H(0.8) Humpty L*+H(0.8) Dumpty r(0.85) L*(0.5) sat on a H*(1.2) wall.
 - Tones: Tone(Prominence)
 - Speaking Rate: r(Rate) and pauses
 - Top Line (highest pitch); Reference Line (reference pitch); Base Line (lowest pitch)
- SABLE is an emerging standard extending SGML http://www.cstr.ed.ac.uk/projects/sable.html
 - marks: emphasis(#), break(#), pitch(base/mid/range,#), rate(#), volume(#), semanticMode(date/time/email/URL/...), speaker(age,sex)
 - Implemented in Festival Synthesizer (free for research, etc.):
 http://www.cstr.ed.ac.uk/projects/festival.html

June 1999

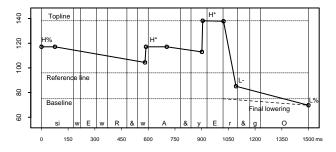
55

Lucent Technologies

Bell Labs Innovations

Intonation in Bell Labs TTS

- Generate a sequence of F0 targets for synthesis
- Example:
 - We were away a year ago.
 - phones: w E w R & w A & y E r & g O
 - Default Declarative intonation: (H%) H* L- L% [question: L* H- H%]



source: Multilingual Text-to-Speech Synthesis, R. Sproat, ed., Kluwer, 1998

June 1999

56

Signal Processing for Speech Synthesis

- Diphones recorded in one context must be generated in other contexts
- Features are extracted from recorded units
- Signal processing manipulates features to smooth boundaries where units are concatenated
- Signal processing modifies signal via 'interpolation'
 - intonation
 - duration

June 1999

The Source-Filter Model of Synthesis

- Model of features to be extracted and fitted
- Excitation or Voicing Source(s) to model sound source
 - standard wave of glottal pulses for voiced sounds
 - randomly varying noise for unvoiced sounds
 - modification of airflow due to lips, etc.
 - high frequency (F0 rate), quasi-periodic, choppy
 - modeled with vector of glottal waveform patterns in voiced regions
- Acoustic Filter(s)
 - shapes the frequency character of vocal tract and radiation character at the lips
 - relatively slow (samples around 5ms suffice) and stationary
 - modeled with LPC (linear predictive coding)

June 1999

58

Barge-in

- Technique to allow speaker to interrupt the system's speech
- Combined processing of input signal and output signal
- Signal detector runs looking for speech start and endpoints
 - tests a generic speech model against noise model
 - typically cancels echoes created by outgoing speech
- If speech is detected:
 - Any synthesized or recorded speech is cancelled
 - Recognition begins and continues until end point is detected

June 1999

Speech Application Programming Interfaces

- Abstract from recognition/synthesis engines
- · Recognizer and synthesizer loading
- Acoustic and grammar model loading (dynamic updates)
- Recognition
 - online
 - n-best or lattice
- **Synthesis**
 - markup
 - barge in
- Acoustic control
 - telephony interface
 - microphone/speaker interface

June 1999

60

Lucent Technologies

Speech API Examples

- SAPI: Microsoft Speech API (rec&synth)
 - communicates through COM objects
 - instances: most systems implement all or some of this (Dragon, IBM, Lucent, L&H, etc.)
- JSAPI: Java Speech API (rec & synth)
 - communicates through Java events (like GUI)
 - concurrency through threads
 - instances: IBM ViaVoice (rec), L&H (synth)
- (J)HAPI: (Java) HTK API (recognition)
 - communicates through C or Java port of C interface
 - eg: Entropics Cambridge Research Lab's HMM Tool Kit (HTK)
- Galaxy (rec & synth)
 - communicates through a production system scripting language
 - MIT System, ported by MITRE for DARPA Communicator

June 1999 61