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Speech and Audio Processing

» Signal processing:
— Convert the audio wave into a sequence of feature vectors
» Speech recognition:
— Decode the sequence of feature vectors into a sequence of words
* Semantic interpretation:
— Determine the meaning of the recognized words
* Speech synthesis:
— Generate synthetic speech from a marked-up word string
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Tutorial Overview: Outline

Part | Part 1l

« Signal processing « Discourse and dialogue

» Speech recognition — Discourse interpretation
— acoustic modeling — Dialogue management
— language modeling — Response generation
— decoding

* Semantic interpretation « Dialogue evaluation

* Speech synthesis - Data collection
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Acoustic Waves

* Human speech generates a wave
— like a loudspeaker moving

* A wave for the words “speech lab” looks like:
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Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:
http://lethe.leeds.ac.uk/research/cogn/speech/tutorial/
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Acoustic Sampling

* 10 ms frame (ms = millisecond = 1/1000 second)
* ~25 ms window around frame to smooth signal processing

||
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v Result:
a, a, a, Acoustic Feature Vectors
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Spectral Analysis

* Frequency gives pitch; amplitude gives volume
— sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)
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» Fourier transform of wave yields a spectrogram
— darkness indicates energy at each frequency
— hundreds to thousands of frequency samples
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Acoustic Features: Mel Scale Filterbank

» Derive Mel Scale Filterbank coefficients

* Mel scale:
— models non-linearity of human audio perception
— mel(f) = 2595 log,,(1 + f/ 700)
— roughly linear to 1000Hz and then logarithmic

* Filterbank

— collapses large number of FFT parameters by filtering with ~20
triangular filters spaced on mel scale

» frequency
mym,m; m, Mg Mg ... coefficients
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Cepstral Coefficients

» Cepstral Transform is a discrete cosine transform of log
filterbank amplitudes:

c =(2/N)"2 ZjN:lIog m, cos[HNl(j —0.5)[5

* Resultis ~12 Mel Frequency Cepstral Coefficients (MFCC)
» Almost independent (unlike mel filterbank)

» Use Delta (velocity / first derivative) and Delta? (acceleration
/ second derivative) of MFCC (+ ~24 features)
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Additional Signal Processing

* Pre-emphasis prior to Fourier transform to boost high level
energy
» Liftering to re-scale cepstral coefficients

* Channel Adaptation to deal with line and microphone
characteristics (example: cepstral mean normalization)

» Echo Cancellation to remove background noise (including
speech generated from the synthesizer)

* Adding a Total (log) Energy feature (+/- normalization)
» End-pointing to detect signal start and stop
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Tutorial Overview: Outline

Part | Part 1l

« Signal processing « Discourse and dialogue

» Speech recognition — Discourse interpretation
— acoustic modeling — Dialogue management
— language modeling — Response generation
— decoding

* Semantic interpretation » Dialogue evaluation

Speech synthesis Data collection
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Properties of Recognizers

» Speaker Independent vs. Speaker Dependent

» Large Vocabulary (2K-200K words) vs. Limited Vocabulary
(2-200)

» Continuous vs. Discrete

» Speech Recognition vs. Speech Verification

» Real Time vs. multiples of real time

* Spontaneous Speech vs. Read Speech

» Noisy Environment vs. Quiet Environment

» High Resolution Microphone vs. Telephone vs. Cellphone

» Adapt to speaker vs. non-adaptive

* Low vs. High Latency

» With online incremental results vs. final results
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The Speech Recognition Problem

* Bayes’' Law
— P(ab) = P(alb) P(b) = P(bla) P(a)
— Joint probability of a and b = probability of b times the probability of a
given b

* The Recognition Problem

— Find most likely sequence w of “words” given the sequence of
acoustic observation vectors a

— Use Bayes’ law to create a generative model
- ArgMax,,, P(w|a) = ArgMax,,, P(alw) P(w) / P(a)
= ArgMax,,, P(alw) P(w)

e Acoustic Model:  P(a|w)
* Language Model: P(w)

Lucent Technologies
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Tutorial Overview: Outline
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Hidden Markov Models (HMMs)

 HMMs provide generative acoustic models P(a|w)

» probabilistic, non-deterministic finite-state automaton
— state n generates feature vectors with density P,
— transitions from state j to n are probabilistic P;,
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HMMs: Single Gaussian Distribution

» Outgoing likelihoods: anjnzl

» Feature vector a generated by normal density (Gaussian)
with mean ;7 and covariance matrix

P.(a)=N(a|n,.2,)
= (2m 2 |z, 2 exp(—%(a—nnfzn‘l(a—nn»
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June 1999 16 O s oo 0




HMMs: Gaussian Mixtures

* To account for variable pronunciations

» Each state generates acoustic vectors according to a linear
combination of m Gaussian models, weighted by A,

I:)n (a) = zm/]n,m N(alnn,m’zn,m)

Three-component
mixture model in
two dimensions
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Acoustic Modeling with HMMs

» Train HMMs to represent subword units
 Units typically segmental; may vary in granularity
— phonological (~40 for English)
— phonetic (~60 for English)

— context-dependent triphones (~14,000 for English): models
temporal and spectral transitions between phones

— silence and noise are usually additional symbols
« Standard architecture is three successive states per
phone:

Lucent Technologi
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Pronunciation Modeling

* Needed for speech recognition and synthesis
» Maps orthographic representation of words to sequence(s)
of phones
» Dictionary doesn’t cover language due to:
— open classes
— names
— inflectional and derivational morphology

» Pronunciation variation can be modeled with multiple
pronunciation and/or acoustic mixtures

 If multiple pronunciations are given, estimate likelihoods

» Use rules (e.g. assimilation, devoicing, flapping), or
statistical transducers

Lucent Technologies
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Lexical HMMs

» Create compound HMM for each lexical entry by
concatenating the phones making up the pronunciation
— example of HMM for ‘lab’ (following ‘speech’ for crossword triphone)

triphone:  ch-l+a l-a+b a-b+#
phone: I a b

» Multiple pronunciations can be weighted by likelihood into
compound HMM for a word

* (Tri)phone models are independent parts of word models

Lucent Technologi
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HMM Training: Baum-Welch Re-estimation

» Determines the probabilities for the acoustic HMM models
Bootstraps from initial model

— hand aligned data, previous models or flat start

Allows embedded training of whole utterances:

— transcribe utterance to words Wy,...,W, and generate a compound
HMM by concatenating compound HMMs for words: my,...,m,

— calculate acoustic vectors: a4,...,a,
Iteratively converges to a new estimate
Re-estimates all paths because states are hidden

Provides a maximum likelihood estimate
— model that assigns training data the highest likelihood
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Tutorial Overview: Outline
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Probabilistic Language Modeling: History

» Assigns probability P(w) to word sequence w = w; ,W,,...,W,
» Bayes’ Law provides a history-based model:

P(wy ,W,,...,w,)

= P(wy) P(Wolwy) P(Wslwy,Wp) - P(Wy|wy,...,Wy.y)
» Cluster histories to reduce number of parameters

Lucent Technologies
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N -gram Language Modeling

* n-gram assumption clusters based on last n-1 words
Wy, Wiq) ~ PW)|Wi o q,00 W0 W)

unigrams ~ P(w))

bigrams ~  P(w;|w;,)

trigrams ~  P(wj|w, ,w, )

» Trigrams often interpolated with bigram and unigram:

|

=2
3
S

Fws [w,w,) ) Fwsfw,) 0 F(w)

°Y Fw,w) Y Fw w) Y Fw)

P(w; [, w,) = A

— the A typically estimated by maximum likelihood estimation on held
out data (F(.|.) are relative frequencies)

— many other interpolations exist (another standard is a non-linear
backoff)
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Extended Probabilistic Language Modeling

» Histories can include some indication of semantic topic
— latent-semantic indexing (vector-based information retrieval model)
— topic-spotting and blending of topic-specific models
— dialogue-state specific language models
» Language models can adapt over time
— recent history updates model through re-estimation or blending
— often done by boosting estimates for seen words (triggers)
— new words and/or pronunciations can be added

» Can estimate category tags (syntactic and/or semantic)
— Joint word/category model: P(word,:tag,,...,word,:tag,)
— example: P(word:tag|History) ~ P(word|tag) P(tag|History)

Lucent Technologies
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Finite State Language Modeling

» Write a finite-state task grammar (with non-recursive CFG)

» Simple Java Speech APl example (from user’s guide):

public <Command> = [<Polite>] <Action> <Object> (and <Object>)*;
<Action> = open | close | delete;
<Object> = the window | the file;
<Polite> = please;

» Typically assume that all transitions are equi-probable
» Technology used in most current applications

» Can put semantic actions in the grammar
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Information Theory: Perplexity

» Perplexity is standard model of recognition complexity given
a language model

» Perplexity measures the conditional likelihood of a corpus,
given a language model P(.):

PP(W,,..., Wy ) = P(W,,..., W) ™"

* Roughly the number of equi-probable choices per word
» Typically computed by taking logs and applying history-
based Bayesian decomposition:

N
log, PP=-1/N Zn=1|092 P(w, | W,..., W, ;)

But lower perplexity doesn’t guarantee better recognition

Lucent Technologies
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Zipfs Law

» Lexical frequency is inversely proportional to rank
— Frequency(n) = Frequency of n-th most frequent word
— Zipf's Law : Frequency(Rank) = Frequency(1)/Rank
— Thus: log Frequency(Rank) [0 - log Rank

Log of Yocabulary against Log of Text Length

Wuthering Heights
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- Log Text Length

From G.R. Turner’s web site on Zipf's law:
http://www.btinternet.com/~g.r.turner/ZipfDoc.htm
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Vocabulary Acquisition

* IBM personal E-mail corpus of PDB (by R.L. Mercer)
* static coverage is given by most frequent n words
» dynamic coverage is most recent n words

Vocabulary Static Dynamic Text Size
Coverage Coverage

5,000 92.5 95.5 56,000

10,000 95.9 98.2 240,000

15,000 97.0 99.0 640,000

20,000 97.6 99.5 1,300,000

Lucent Technologies
June 1999 29 el tas noaions C

Language HMMs

» Can take HMMs for each word and combine into a single
HMM for the whole language (allows cross-word models)

* Result is usually too large to expand statically in memory
» A two word example is given by:

P(word1|wordl)
P(word1) P(word2|word1)
P(word1|word2)
P(word2) | P(word2|word2)

Lucent Technologi
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Tutorial Overview: Outline

Part | Part 1l

* Signal processing « Discourse and dialogue

» Speech recognition — Discourse interpretation
— acoustic modeling — Dialogue management
— language modeling — Response generation
— decoding

* Semantic interpretation » Dialogue evaluation

* Speech synthesis « Data collection
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HMM Decoding

» Decoding Problem is finding best word sequence:

— ArgMax 1 - wmPWy,... . W | ag,....a,)
* Words w;...w,, are fully determined by sequences of states
» Many state sequences produce the same words

* The Viterbi assumption:

— the word sequence derived from the most likely path will be the most
likely word sequence (as would be computed over all paths)

¢(s) =Max P(s,,...,§ |ay,...&) = P,(a)) Max, ¢_(r) P s

Acoustics Max over likelihood Transition
for state s previous previous probability
for input a states r stateis r fromrtos

Lucent Technologi
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Visualizing Viterbi Decoding: The Trellis
¢ (s) =Max P(s,,...,s |a;...,&) =P (a)Max, ¢_,(r)P
input  a; a Ajyq

S1
@1(s1)

best
pa{A

%%k) C;Qk) @a(S))
time >

tig t; tig
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Viterbi Search: Dynamic Programming
Token Passing

» Algorithm:

— Initialize all states with a token with a null history and the likelihood

that it's a start state
— For each frame a,
« For each token t in state s with probability P(t), history H
— For each state r
» Add new token to s with probability P(t) P, P (a,), and
history s.H

* Time synchronous from left to right

« Allows incremental results to be evaluated
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Pruning the Search Space

» Entire search space for Viterbi search is much too large
» Solution is to prune tokens for paths whose score is too low
» Typical method is to use:
— histogram: only keep at most n total hypotheses
— beam: only keep hypotheses whose score is a fraction of best score
* Need to balance small n and tight beam to limit search and
minimal search error (good hypotheses falling off beam)
 HMM densities are usually scaled differently than the
discrete likelihoods from the language model
— typical solution: boost language model's dynamic range, using P(w)”
P(a|w), usually with with n ~ 15
» Often include penalty for each word to favor hypotheses
with fewer words

Lucent Technologies
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N-best Hypotheses and Word Graphs

» Keep multiple tokens and return n-best paths/scores:
— pl flights from Boston today
— p2 flights from Austin today
— p3 flights for Boston to pay
— p4 lights for Boston to pay
» Can produce a packed word graph (a.k.a. lattice)
— likelihoods of paths in lattice should equal likelihood for n-best

Austin

flights from today
O . Boston O O

O
lights © Boston t /‘p y
9 » »O—2 0

for
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Search-based Decoding

* A*search:
— Compute all initial hypotheses and place in priority queue
— For best hypothesis in queue
« extend by one observation, compute next state score(s) and
place into the queue
» Scoring now compares derivations of different lengths
— would like to, but can’t compute cost to complete until all data is seen
— instead, estimate with simple normalization for length
— usually prune with beam and/or histogram constraints
» Easy to include unbounded amounts of history because no
collapsing of histories as in dynamic programming n-gram

» Also known as stack decoder (priority queue is “stack”)

Lucent Technologies
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Multiple Pass Decoding

» Perform multiple passes, applying successively more fine-
grained language models

» Can much more easily go beyond finite state or n-gram
» Can use for Viterbi or stack decoding
» Can use word graph as an efficient interface

» Can compute likelihood to complete hypotheses after each
pass and use in next round to tighten beam search

» First pass can even be a free phone decoder without a
word-based language model

Lucent Technologi
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Measuring Recognition Accuracy

e Word Error Rate = Insertions+ Deletions + Substitutions
Words

» Example scoring:
— actual utterance: four six seven nine  three three  seven
— recognizer: four oh six seven five  three seven

insert subst delete

- WER: (1+1+1)/7=43%

» Would like to study concept accuracy
— typically count only errors on content words [application dependent]
— ignore case marking (singular, plural, etc.)

» For word/concept spotting applications:

— recall: percentage of target words (concept) found
— precision: percentage of hypothesized words (concepts) in target

Lucent Technologies
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Empirical Recognition Accuracies

» Cambridge HTK, 1997; multipass HMM w. lattice rescoring
* Top Performer in ARPA’s HUB-4: Broadcast News Task

* 65,000 word vocabulary; Out of Vocabulary: 0.5%

» Perplexities:

— word bigram: 240 (6.9 million bigrams)
— backoff trigram of 1000 categories: 238 (803K bi, 7.1G tri)

— word trigram; 159 (8.4 million trigrams)
— word 4-gram: 147 (8.6 million 4-grams)

word 4-gram + category trigram: 137
* Word Error Rates:
— clean, read speech: 9.4%
— clean, spontaneous speech: 15.2%
— low fidelity speech: 19.5%
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Empirical Recognition Accuracies (cont’d)

* Lucent 1998, single pass HMM

» Typical of real-time telephony performance (low fidelity)

» 3,000 word vocabulary; Out of Vocabulary: 1.5%

» Blended models from customer/operator & customer/system

» Perplexities customer/op customer/system
— bigram: 105.8 (27,200) 32.1(12,808)
— trigram: 99.5 (68,500) 24.4 (25,700)

* Word Error Rate: 23%

» Content Term (single, pair, triple of words) Precision/Recall
— one-word terms:  93.7 / 88.4
— two-word terms:  96.9/ 85.4
— three-word terms: 98.5/ 84.3

Lucent Technologies
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Confidence Scoring and Rejection

» Alternative to standard acoustic density scoring
compute HMM acoustic score for word(s) in usual way
baseline score for an anti-model

compute hypothesis ratio (Word Score / Baseline Score)
test hypothesis ratio vs. threshold

» Can be applied to:
— free word spotting (given pronunciations)
— (word-by-word) acoustic confidence scoring for later processing
— verbal information verification
« existing info: name, address, social security number
e password
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Tutorial Overview: Outline

Part | Part 1l

* Signal processing « Discourse and dialogue

» Speech recognition — Discourse interpretation
— acoustic modeling — Dialogue management
— language modeling — Response generation
— decoding

* Semantic interpretation » Dialogue evaluation

* Speech synthesis « Data collection
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Semantic Interpretation: Word Strings

» Content is just words
— System: What is your address?
— User: fourteen eleven main street

» Can also do concept extraction / keyword(s) spotting
— User: My address is fourteen eleven main street

» Applications
— template filling
— directory services
— information retrieval

Lucent Technologi
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Semantic Interpretation: Pattern-Based

» Simple (typically regular) patterns specify content

ATIS (Air Traffic Information System) Task:
— System: What are your travel plans?
— User:  [On Monday], I'm going [from Boston] [to San Francisco].
— Content: [DATE=Monday, ORIGIN=Boston, DESTINATION=SFO]
Can combine content-extraction and language modeling
— but can be too restrictive as a language model
Java Speech API: (curly brackets show semantic ‘actions’)
public <command> = <action> [<object>] [<polite>];
<action> = open {OP} | close {CL} | move {MV},
<object> = [<this_that_etc>] window | door;
<this_that_etc> = a | the | this | that | the current;
<polite> = please | kindly;

Can be generated and updated on the fly (eg. Web Apps)

Lucent Technologies
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Semantic Interpretation: Parsing

* In general case, have to uncover who did what to whom:
System: What would you like me to do next?

User: Put the block in the box on Platform 1. [ambiguous]
System: How can | help you?

User: Where is A Bug’s Life playing in Summit?

» Requires some kind of parsing to produce relations:

— Who did what to whom:
?(where(present(in(Summit,play(BugsLife)))))

— This kind of representation often used for machine translation
» Often transferred to flatter frame-based representation:

— Utterance type: where-question

— Movie: A Bug's Life

— Town: Summit

Lucent Technologies
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Robustness and Partiality

» Controlled Speech
— limited task vocabulary; limited task grammar

* Spontaneous Speech
— Can have high out-of-vocabulary (OOV) rate

— Includes restarts, word fragments, omissions, phrase fragments,
disagreements, and other disfluencies

— Contains much grammatical variation
— Causes high word error-rate in recognizer

» Parsing is often partial, allowing:
— omission
— parsing fragments

Lucent Technologies
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Recorded Prompts

* The simplest (and most common) solution is to record
prompts spoken by a (trained) human

* Produces human quality voice
» Limited by number of prompts that can be recorded
» Can be extended by limited cut-and-paste or template filling

Lucent Technologies
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Speech Synthesis

* Rule-based Synthesis
— Uses linguistic rules (+/- training) to generate features
— Example: DECTalk

» Concatenative Synthesis
— Record basic inventory of sounds
— Retrieve appropriate sequence of units at run time
— Concatenate and adjust durations and pitch
— Waveform synthesis

Lucent Technologi
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Diphone and Polyphone Synthesis

* Phone sequences capture co-articulation

Cut speech in positions that minimize context contamination
Need single phones, diphones and sometimes triphones
Reduce number collected by

— phonotactic constraints

— collapsing in cases of no co-articulation

Data Collection Methods

— Collect data from a single (professional) speaker

— Select text with maximal coverage (typically with greedy algorithm),
or

— Record minimal pairs in desired contexts (real words or nonsense)

Lucent Technologies
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Duration Modeling

Must generate segments with the appropriate duration
* Segmental Identity

— /ai/ in like twice as long as /I/ in lick

Surrounding Segments

— vowels longer following voiced fricatives than voiceless stops
Syllable Stress

— onsets and nuclei of stressed syllables longer than in unstressed
Word “importance”

— word accent with major pitch movement lengthens

Location of Syllable in Word

— word ending longer than word starting longer than word internal
Location of the Syllable in the Phrase

— phrase final syllables longer than same syllable in other positions
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Intonation: Tone Sequence Models

» Functional Information can be encoded via tones:
— given/new information (information status)
— contrastive stress
— phrasal boundaries (clause structure)
— dialogue act (statement/question/command)

* Tone Sequence Models

— FO contours generated from phonologically distinctive tones/pitch
accents which are locally independent

— generate a sequence of tonal targets and fit with signal processing

Lucent Technologies
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Intonation for Function

* ToBI (Tone and Break Index) System, is one example:
Pitch Accent * (H*, L*, H*+L, H+L*, L*+H, L+H?*)
Phrase Accent - (H-, L-)
Boundary Tone % (H%, L%)
Intonational Phrase
<Pitch Accent>* <Phrase Accent> <Boundary Tone>

Anne. Anne?
<gr H* L- L% § L H- H%
statement 2
vs. question ¢ ¢ s
example:

~ |~

® n

100
8
E]

100

0 0.1 0.2 0.3 sec 0 0.1 0.2 03 sec

source: Multilingual Text-to-Speech Synthesis, R. Sproat, ed., Kluwer, 1998 0
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Text Markup for Synthesis

* Bell Labs TTS Markup
— 1(0.9) L*+H(0.8) Humpty L*+H(0.8) Dumpty r(0.85) L*(0.5) sat on a
H*(1.2) wall.
— Tones: Tone(Prominence)
— Speaking Rate: r(Rate) and pauses

— Top Line (highest pitch); Reference Line (reference pitch); Base
Line (lowest pitch)

» SABLE is an emerging standard extending SGML
http://www.cstr.ed.ac.uk/projects/sable.html
— marks: emphasis(#), break(#), pitch(base/mid/range.#), rate(#),
volume(#), semanticMode(date/time/email/URLY/...),
speaker(age,sex)
— Implemented in Festival Synthesizer (free for research, etc.):
http://www.cstr.ed.ac.uk/projects/festival.html
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Intonation in Bel/l Labs TTS

» Generate a sequence of FO targets for synthesis
» Example:
— We were away a year ago.
— phonesswWEWR&WA&YEr&goO
— Default Declarative intonation; (H%) H* L- L% [question: L* H- H%)]

Topline B

140

120

1 Hw H*
G ——
—e— | | _I L ‘

\\
[=3
o
=
Reference line XL,
l\
8 ~
Baseline el il i L %)
Fingl lowering
8
si w E |w| R [&|w A &| y E r | &j|g [0

0 150 300 450 600 750 900 1050 1200 1350 1500 ms

Lucent Technologies

source: Multilingual Text-to-Speech Synthesis, R. Sproat, ed., Kluwer, 1998
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Signal Processing for Speech Synthesis

» Diphones recorded in one context must be generated in
other contexts

» Features are extracted from recorded units

» Signal processing manipulates features to smooth
boundaries where units are concatenated

» Signal processing modifies signal via ‘interpolation’
— intonation
— duration

Lucent Technologies
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The Source-Filter Model of Synthesis

* Model of features to be extracted and fitted

» Excitation or Voicing Source(s) to model sound source
— standard wave of glottal pulses for voiced sounds
randomly varying noise for unvoiced sounds
modification of airflow due to lips, etc.
high frequency (FO rate), quasi-periodic, choppy
modeled with vector of glottal waveform patterns in voiced regions
» Acoustic Filter(s)

— shapes the frequency character of vocal tract and radiation character
at the lips

— relatively slow (samples around 5ms suffice) and stationary
— modeled with LPC (linear predictive coding)
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Barge-in

» Technique to allow speaker to interrupt the system’s speech
» Combined processing of input signal and output signal
» Signal detector runs looking for speech start and endpoints

— tests a generic speech model against noise model
— typically cancels echoes created by outgoing speech

* If speech is detected:
— Any synthesized or recorded speech is cancelled
— Recognition begins and continues until end point is detected
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Speech Application Programming Interfaces

» Abstract from recognition/synthesis engines
* Recognizer and synthesizer loading
» Acoustic and grammar model loading (dynamic updates)
* Recognition

— online

— n-best or lattice
» Synthesis

— markup

— bargein
» Acoustic control

— telephony interface

— microphone/speaker interface
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Speech APl Examples

* SAPI: Microsoft Speech API (rec&synth)
— communicates through COM objects

— instances: most systems implement all or some of this (Dragon, IBM,
Lucent, L&H, etc.)

» JSAPI: Java Speech API (rec & synth)
— communicates through Java events (like GUI)
— concurrency through threads
— instances: IBM ViaVoice (rec), L&H (synth)
* (JHAPI: (Java) HTK API (recognition)
— communicates through C or Java port of C interface
— eg: Entropics Cambridge Research Lab’s HMM Tool Kit (HTK)
» Galaxy (rec & synth)
— communicates through a production system scripting language
— MIT System, ported by MITRE for DARPA Communicator @
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